Keywords: commutativity-preserving exterior product; ${\widetilde {B}_0}$-pairing; curly exterior square; Bogomolov multiplier
@article{10_21136_CMJ_2024_0245_23,
author = {Araghi Rostami, Zeinab and Parvizi, Mohsen and Niroomand, Peyman},
title = {The {Bogomolov} multiplier of groups of order $p^7$ and exponent $p$},
journal = {Czechoslovak Mathematical Journal},
pages = {955--974},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0245-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0245-23/}
}
TY - JOUR AU - Araghi Rostami, Zeinab AU - Parvizi, Mohsen AU - Niroomand, Peyman TI - The Bogomolov multiplier of groups of order $p^7$ and exponent $p$ JO - Czechoslovak Mathematical Journal PY - 2024 SP - 955 EP - 974 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0245-23/ DO - 10.21136/CMJ.2024.0245-23 LA - en ID - 10_21136_CMJ_2024_0245_23 ER -
%0 Journal Article %A Araghi Rostami, Zeinab %A Parvizi, Mohsen %A Niroomand, Peyman %T The Bogomolov multiplier of groups of order $p^7$ and exponent $p$ %J Czechoslovak Mathematical Journal %D 2024 %P 955-974 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0245-23/ %R 10.21136/CMJ.2024.0245-23 %G en %F 10_21136_CMJ_2024_0245_23
Araghi Rostami, Zeinab; Parvizi, Mohsen; Niroomand, Peyman. The Bogomolov multiplier of groups of order $p^7$ and exponent $p$. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 955-974. doi: 10.21136/CMJ.2024.0245-23
[1] Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc. Lond. Math. Soc., III. Ser. 25 (1972), 75-95. | DOI | MR | JFM
[2] Blyth, R. D., Morse, R. F.: Computing the nonabelian tensor squares of polycyclic groups. J. Algebra 321 (2009), 2139-2148. | DOI | MR | JFM
[3] Bogomolov, F. A.: The Brauer group of quotient spaces by linear group actions. Math. USSR, Izv. 30 (1988), 455-485. | DOI | MR | JFM
[4] Chen, Y., Ma, R.: Bogomolov multipliers of some groups of order $p^6$. Commun. Algebra 49 (2021), 242-255. | DOI | MR | JFM
[5] Chu, H., Hu, S.-J., Kang, M.-C., Kunyavskii, B. E.: Noether's problem and the unramified Brauer groups for groups of order 64. Int. Math. Res. Not. 12 (2010), 2329-2366. | DOI | MR | JFM
[6] Chu, H., Kang, M.-C.: Rationality of $p$-group actions. J. Algebra 237 (2001), 673-690. | DOI | MR | JFM
[7] Eick, B., Nickel, W.: Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group. J. Algebra 320 (2008), 927-944. | DOI | MR | JFM
[8] Hoshi, A., Kang, M.-C.: Unramified Brauer groups for groups of order $p^5$. Available at , 14 pages. | arXiv | DOI
[9] Jezernik, U., Moravec, P.: Bogomolov multipliers of groups of order 128. Exp. Math. 23 (2014), 174-180. | DOI | MR | JFM
[10] Kunyavskii, B.: The Bogomolov multiplier of finite simple groups. Cohomological and Geometric Approaches to Rationality Problems Progres in Mathematics 282. Birkhäuser, Boston (2010), 209-217. | DOI | MR | JFM
[11] Michailov, I.: Bogomolov multipliers for some $p$-groups of nilpotency class 2. Acta Math. Sin., Engl. Ser. 32 (2016), 541-552. | DOI | MR | JFM
[12] Miller, C.: The second homology group of a group; relations among commutators. Proc. Am. Math. Soc. 3 (1952), 588-595. | DOI | MR | JFM
[13] Moravec, P.: Groups of order $p^5$ and their unramified Brauer groups. J. Algebra 372 (2012), 420-427. | DOI | MR | JFM
[14] Moravec, P.: Unramified Brauer groups of finite and infinite groups. Am. J. Math. 134 (2012), 1679-1704. | DOI | MR | JFM
[15] Moravec, P.: Unramified Brauer groups and isoclinism. ARS Math. Contemp. 7 (2014), 337-340. | DOI | MR | JFM
[16] Noether, E.: Gleichungen mit vorgeschriebener Gruppe. Math. Ann. 78 (1917), 221-229 German \99999JFM99999 46.0135.01. | DOI | MR
[17] O'Brien, E.: Polycyclic group. Available at www.math.auckland.ac.nz/ {obrien/GAC-lectures.pdf} (2010), 51 pages.
[18] Saltman, D. J.: Noether's problem over an algebraically closed field. Invent. Math. 77 (1984), 71-84. | DOI | MR | JFM
[19] Shafarevich, I. R.: The Lüroth's problem. Proc. Steklov Inst. Math. 183 (1991), 241-246. | MR | JFM
[20] Swan, R. G.: Noether's problem in Galois theory. Emmy Noether in Bryn Mawr Springer, New York (1983), 21-40. | DOI | MR | JFM
[21] Wilkinson, D.: The groups of exponent $p$ and order $p^7$ ($p$ any prime). J. Algebra 118 (1988), 109-119. | DOI | MR | JFM
Cité par Sources :