The Bogomolov multiplier of groups of order $p^7$ and exponent $p$
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 955-974
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order $p^7$ $(p > 2)$ and exponent $p$. We present a comprehensive classification of these groups, identifying those with nontrivial Bogomolov multipliers and distinguishing them from groups with trivial multipliers. Our analysis not only clarifies the conditions under which the Bogomolov multiplier is nontrivial but also refines existing computational methods, enhancing the process of determining these multipliers for the specified class of $p$-groups.
We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order $p^7$ $(p > 2)$ and exponent $p$. We present a comprehensive classification of these groups, identifying those with nontrivial Bogomolov multipliers and distinguishing them from groups with trivial multipliers. Our analysis not only clarifies the conditions under which the Bogomolov multiplier is nontrivial but also refines existing computational methods, enhancing the process of determining these multipliers for the specified class of $p$-groups.
DOI : 10.21136/CMJ.2024.0245-23
Classification : 13A50, 14E08, 14M20, 20D15
Keywords: commutativity-preserving exterior product; ${\widetilde {B}_0}$-pairing; curly exterior square; Bogomolov multiplier
@article{10_21136_CMJ_2024_0245_23,
     author = {Araghi Rostami, Zeinab and Parvizi, Mohsen and Niroomand, Peyman},
     title = {The {Bogomolov} multiplier of groups of order $p^7$ and exponent $p$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {955--974},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0245-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0245-23/}
}
TY  - JOUR
AU  - Araghi Rostami, Zeinab
AU  - Parvizi, Mohsen
AU  - Niroomand, Peyman
TI  - The Bogomolov multiplier of groups of order $p^7$ and exponent $p$
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 955
EP  - 974
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0245-23/
DO  - 10.21136/CMJ.2024.0245-23
LA  - en
ID  - 10_21136_CMJ_2024_0245_23
ER  - 
%0 Journal Article
%A Araghi Rostami, Zeinab
%A Parvizi, Mohsen
%A Niroomand, Peyman
%T The Bogomolov multiplier of groups of order $p^7$ and exponent $p$
%J Czechoslovak Mathematical Journal
%D 2024
%P 955-974
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0245-23/
%R 10.21136/CMJ.2024.0245-23
%G en
%F 10_21136_CMJ_2024_0245_23
Araghi Rostami, Zeinab; Parvizi, Mohsen; Niroomand, Peyman. The Bogomolov multiplier of groups of order $p^7$ and exponent $p$. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 955-974. doi: 10.21136/CMJ.2024.0245-23

[1] Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc. Lond. Math. Soc., III. Ser. 25 (1972), 75-95. | DOI | MR | JFM

[2] Blyth, R. D., Morse, R. F.: Computing the nonabelian tensor squares of polycyclic groups. J. Algebra 321 (2009), 2139-2148. | DOI | MR | JFM

[3] Bogomolov, F. A.: The Brauer group of quotient spaces by linear group actions. Math. USSR, Izv. 30 (1988), 455-485. | DOI | MR | JFM

[4] Chen, Y., Ma, R.: Bogomolov multipliers of some groups of order $p^6$. Commun. Algebra 49 (2021), 242-255. | DOI | MR | JFM

[5] Chu, H., Hu, S.-J., Kang, M.-C., Kunyavskii, B. E.: Noether's problem and the unramified Brauer groups for groups of order 64. Int. Math. Res. Not. 12 (2010), 2329-2366. | DOI | MR | JFM

[6] Chu, H., Kang, M.-C.: Rationality of $p$-group actions. J. Algebra 237 (2001), 673-690. | DOI | MR | JFM

[7] Eick, B., Nickel, W.: Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group. J. Algebra 320 (2008), 927-944. | DOI | MR | JFM

[8] Hoshi, A., Kang, M.-C.: Unramified Brauer groups for groups of order $p^5$. Available at , 14 pages. | arXiv | DOI

[9] Jezernik, U., Moravec, P.: Bogomolov multipliers of groups of order 128. Exp. Math. 23 (2014), 174-180. | DOI | MR | JFM

[10] Kunyavskii, B.: The Bogomolov multiplier of finite simple groups. Cohomological and Geometric Approaches to Rationality Problems Progres in Mathematics 282. Birkhäuser, Boston (2010), 209-217. | DOI | MR | JFM

[11] Michailov, I.: Bogomolov multipliers for some $p$-groups of nilpotency class 2. Acta Math. Sin., Engl. Ser. 32 (2016), 541-552. | DOI | MR | JFM

[12] Miller, C.: The second homology group of a group; relations among commutators. Proc. Am. Math. Soc. 3 (1952), 588-595. | DOI | MR | JFM

[13] Moravec, P.: Groups of order $p^5$ and their unramified Brauer groups. J. Algebra 372 (2012), 420-427. | DOI | MR | JFM

[14] Moravec, P.: Unramified Brauer groups of finite and infinite groups. Am. J. Math. 134 (2012), 1679-1704. | DOI | MR | JFM

[15] Moravec, P.: Unramified Brauer groups and isoclinism. ARS Math. Contemp. 7 (2014), 337-340. | DOI | MR | JFM

[16] Noether, E.: Gleichungen mit vorgeschriebener Gruppe. Math. Ann. 78 (1917), 221-229 German \99999JFM99999 46.0135.01. | DOI | MR

[17] O'Brien, E.: Polycyclic group. Available at www.math.auckland.ac.nz/ {obrien/GAC-lectures.pdf} (2010), 51 pages.

[18] Saltman, D. J.: Noether's problem over an algebraically closed field. Invent. Math. 77 (1984), 71-84. | DOI | MR | JFM

[19] Shafarevich, I. R.: The Lüroth's problem. Proc. Steklov Inst. Math. 183 (1991), 241-246. | MR | JFM

[20] Swan, R. G.: Noether's problem in Galois theory. Emmy Noether in Bryn Mawr Springer, New York (1983), 21-40. | DOI | MR | JFM

[21] Wilkinson, D.: The groups of exponent $p$ and order $p^7$ ($p$ any prime). J. Algebra 118 (1988), 109-119. | DOI | MR | JFM

Cité par Sources :