Stević-Sharma type operators on Fock spaces in several variables
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1241-1263
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\varphi $ be an entire self-map of $\mathbb {C}^N$, $u_0$ be an entire function on $\mathbb {C}^N$ and ${\bf u}=(u_1,\cdots ,u_N)$ be a vector-valued entire function on $\mathbb {C}^N$. We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator $T_{u_0,{\bf u},\varphi }$ as follows: $$\openup -.4pt T_{u_0,{\bf u},\varphi }f=u_0\cdot f\circ \varphi +\sum _{i=1}^Nu_i\cdot \frac {\partial f}{\partial z_i}\circ \varphi . $$ We investigate the boundedness and compactness of $T_{u_0,{\bf u},\varphi }$ on Fock spaces. The complex symmetry and self-adjointness of $T_{u_0,{\bf u},\varphi }$ are also characterized.
Let $\varphi $ be an entire self-map of $\mathbb {C}^N$, $u_0$ be an entire function on $\mathbb {C}^N$ and ${\bf u}=(u_1,\cdots ,u_N)$ be a vector-valued entire function on $\mathbb {C}^N$. We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator $T_{u_0,{\bf u},\varphi }$ as follows: $$\openup -.4pt T_{u_0,{\bf u},\varphi }f=u_0\cdot f\circ \varphi +\sum _{i=1}^Nu_i\cdot \frac {\partial f}{\partial z_i}\circ \varphi . $$ We investigate the boundedness and compactness of $T_{u_0,{\bf u},\varphi }$ on Fock spaces. The complex symmetry and self-adjointness of $T_{u_0,{\bf u},\varphi }$ are also characterized.
DOI : 10.21136/CMJ.2024.0244-24
Classification : 30H20, 46E15, 47B33
Keywords: Stević-Sharma operator; Fock space; $\mathcal {J}$-symmetry
@article{10_21136_CMJ_2024_0244_24,
     author = {Ma, Lijun and Yang, Zicong},
     title = {Stevi\'c-Sharma type operators on {Fock} spaces in several variables},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1241--1263},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0244-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0244-24/}
}
TY  - JOUR
AU  - Ma, Lijun
AU  - Yang, Zicong
TI  - Stević-Sharma type operators on Fock spaces in several variables
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1241
EP  - 1263
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0244-24/
DO  - 10.21136/CMJ.2024.0244-24
LA  - en
ID  - 10_21136_CMJ_2024_0244_24
ER  - 
%0 Journal Article
%A Ma, Lijun
%A Yang, Zicong
%T Stević-Sharma type operators on Fock spaces in several variables
%J Czechoslovak Mathematical Journal
%D 2024
%P 1241-1263
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0244-24/
%R 10.21136/CMJ.2024.0244-24
%G en
%F 10_21136_CMJ_2024_0244_24
Ma, Lijun; Yang, Zicong. Stević-Sharma type operators on Fock spaces in several variables. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1241-1263. doi: 10.21136/CMJ.2024.0244-24

[1] Arroussi, H., Tong, C.: Weighted composition operators between large Fock spaces in several complex variables. J. Funct. Anal. 277 (2019), 3436-3466. | DOI | MR | JFM

[2] Carswell, B., MacCluer, B., Schuster, A.: Composition operators on the Fock space. Acta Sci. Math. 69 (2003), 871-887. | MR | JFM

[3] Chen, R.-Y., Yang, Z.-C., Zhou, Z.-H.: Unitary, self-adjointness and $\mathcal{J}$-symmetric weighted composition operators on Fock-Sobolev spaces. Oper. Matrices 16 (2022), 1139-1154. | DOI | MR | JFM

[4] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). | DOI | MR | JFM

[5] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications. Trans. Am. Math. Soc. 358 (2006), 1285-1315. | DOI | MR | JFM

[6] Hai, P. V., Khoi, L. H.: Complex symmetry of weighted composition operators on the Fock space. J. Math. Anal. Appl. 433 (2016), 1757-1771. | DOI | MR | JFM

[7] Hai, P. V., Khoi, L. H.: Complex symmetric weighted composition operators on the Fock space in several variables. Complex Var. Elliptic Equ. 63 (2018), 391-405. | DOI | MR | JFM

[8] Han, K., Wang, M.: Weighted composition operators on the Fock space. Sci. China, Math. 65 (2022), 111-126. | DOI | MR | JFM

[9] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). | DOI | MR | JFM

[10] Hu, J., Li, S., Ou, D.: Embedding derivatives of Fock spaces and generalized weighted composition operators. J. Nonlinear Var. Anal. 5 (2021), 589-613. | JFM

[11] Hu, X., Yang, Z., Zhou, Z.: Complex symmetric weighted composition operators on Dirichlet spaces and Hardy spaces in the unit ball. Int. J. Math. 31 (2020), Article ID 2050006, 21 pages. | DOI | MR | JFM

[12] Hu, Z.: Equivalent norms on Fock spaces with some application to extended Cesàro operators. Proc. Am. Math. Soc. 141 (2013), 2829-2840. | DOI | MR | JFM

[13] Hu, Z., Lv, X.: Toeplitz operators from one Fock space to another. Integral Equations Oper. Theory 70 (2011), 541-559. | DOI | MR | JFM

[14] Janson, S., Peetre, J., Rochberg, R.: Hankel forms and the Fock space. Rev. Math. Iberoam. 3 (1987), 61-138. | DOI | MR | JFM

[15] Le, T.: Normal and isometric weighted composition operators on Fock space. Bull. Lond. Math. Soc. 46 (2014), 847-856. | DOI | MR | JFM

[16] Liu, Y., Yu, Y.: Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball. J. Math. Anal. Appl. 423 (2015), 76-93. | DOI | MR | JFM

[17] Malhotra, A., Gupta, A.: Complex symmetry of generalized weighted composition operators on Fock space. J. Math. Anal. Appl. 495 (2021), Article ID 124740, 12 pages. | DOI | MR | JFM

[18] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. Springer, New York (1993). | DOI | MR | JFM

[19] Sharma, A. K.: Products of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces. Turk. J. Math. 35 (2011), 275-291. | DOI | MR | JFM

[20] Stević, S.: Weighted composition operators between Fock-type spaces in $\Bbb{C}^N$. Appl. Math. Comput. 215 (2009), 2750-2760. | DOI | MR | JFM

[21] Stević, S.: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces. Appl. Math. Comput. 211 (2009), 222-233. | DOI | MR | JFM

[22] Stević, S.: Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball. Abstr. Appl. Anal. 2010 (2020), Article ID 801264, 14 pages. | DOI | MR | JFM

[23] Stević, S.: On a new product-type operator on the unit ball. J. Math. Inequal. 16 (2022), 1675-1692. | DOI | MR | JFM

[24] Stević, S.: Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the $m$th weighted-type space on the unit disk. Math. Methods Appl. Sci. 47 (2024), 3893-3902. | DOI | MR | JFM

[25] Stević, S., Huang, C.-S., Jiang, Z.-J.: Sum of some product-type operators from Hardy spaces to weighted-type spaces on the unit ball. Math. Methods Appl. Sci. 45 (2022), 11581-11600. | DOI | MR | JFM

[26] Stević, S., Sharma, A. K.: On a product-type operator between Hardy and $\alpha$-Bloch spaces of the upper half-plane. J. Inequal. Appl. 2018 (2018), Article ID 273, 18 pages. | DOI | MR | JFM

[27] Stević, S., Sharma, A. K., Bhat, A.: Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 218 (2011), 2386-2397. | DOI | MR | JFM

[28] Stević, S., Sharma, A. K., Bhat, A.: Products of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 217 (2011), 8115-8125. | DOI | MR | JFM

[29] Stević, S., Sharma, A. K., Krisham, R.: Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces. J. Inequal. Appl. 2016 (2016), Article ID 219, 32 pages. | DOI | MR | JFM

[30] Tien, P. T., Khoi, L. H.: Differences of weighted composition operators between the Fock spaces. Monatsh. Math. 188 (2019), 183-193. | DOI | MR | JFM

[31] Tien, P. T., Khoi, L. H.: Weighted composition operators between different Fock spaces. Potential Anal. 50 (2019), 171-195. | DOI | MR | JFM

[32] Tien, P. T., Khoi, L. H.: Weighted composition operators between Fock spaces in several variables. Math. Nachr. 293 (2020), 1200-1220. | DOI | MR | JFM

[33] Ueki, S.-I.: Hilbert-Schmidt weighted composition operator on the Fock space. Int. J. Math. Anal., Ruse 1 (2007), 769-774. | MR | JFM

[34] Ueki, S.-I.: Weighted composition operator on the Fock space. Proc. Am. Math. Soc. 135 (2007), 1405-1410. | DOI | MR | JFM

[35] Ueki, S.-I.: Weighted composition operators on some function spaces of entire functions. Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 343-353. | DOI | MR | JFM

[36] Wallstén, R.: The $S^p$-criterion for Hankel forms on the Fock space, $0. Math. Scand. 64 (1989), 123-132. DOI 10.7146/math.scand.a-12251 | MR 1036432 | Zbl 0722.47025

[37] Wang, S., Wang, M., Guo, X.: Differences of Stević-Sharma operators. Banach J. Math. Anal. 14 (2020), 1019-1054. | DOI | MR | JFM

[38] Wang, S., Wang, M., Guo, X.: Products of composition, multiplication and radial derivative operators between Banach spaces of holomorphic functions on the unit ball. Complex Var. Elliptic Equ. 65 (2020), 2026-2055. | DOI | MR | JFM

[39] Zhao, L.: Invertible weighted composition operators on Fock space on $\Bbb{C}^N$. J. Funct. Spaces 2015 (2015), Article ID 250358, 5 pages. | DOI | MR | JFM

[40] Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics 263. Springer, New York (2012). | DOI | MR | JFM

[41] Zhu, X.: Generalized weighted composition operators on weighted Bergman spaces. Numer. Funct. Anal. Optim. 30 (2009), 881-893. | DOI | MR | JFM

Cité par Sources :