Keywords: regularizing effect; interplay; minimizer; noncoercive integral functional
@article{10_21136_CMJ_2024_0216_24,
author = {Zhang, Aiping and Feng, Zesheng and Gao, Hongya},
title = {Regularizing effect of the interplay between coefficients in some noncoercive integral functionals},
journal = {Czechoslovak Mathematical Journal},
pages = {915--925},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0216-24},
mrnumber = {4804968},
zbl = {07953686},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/}
}
TY - JOUR AU - Zhang, Aiping AU - Feng, Zesheng AU - Gao, Hongya TI - Regularizing effect of the interplay between coefficients in some noncoercive integral functionals JO - Czechoslovak Mathematical Journal PY - 2024 SP - 915 EP - 925 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/ DO - 10.21136/CMJ.2024.0216-24 LA - en ID - 10_21136_CMJ_2024_0216_24 ER -
%0 Journal Article %A Zhang, Aiping %A Feng, Zesheng %A Gao, Hongya %T Regularizing effect of the interplay between coefficients in some noncoercive integral functionals %J Czechoslovak Mathematical Journal %D 2024 %P 915-925 %V 74 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/ %R 10.21136/CMJ.2024.0216-24 %G en %F 10_21136_CMJ_2024_0216_24
Zhang, Aiping; Feng, Zesheng; Gao, Hongya. Regularizing effect of the interplay between coefficients in some noncoercive integral functionals. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 915-925. doi: 10.21136/CMJ.2024.0216-24
[1] Arcoya, D., Boccardo, L.: Regularizing effect of the interplay between coefficients in some elliptic equations. J. Func. Anal. 268 (2015), 1153-1166. | DOI | MR | JFM
[2] Arcoya, D., Boccardo, L.: Regularizing effect of $L^q$ interplay between coefficients in some elliptic equations. J. Math. Pures Appl. (9) 111 (2018), 106-125. | DOI | MR | JFM
[3] Boccardo, L., Croce, G.: Elliptic Partial Differential Equations: Existence and Regularity of Distributional Solutions. De Gruyter Studies in Mathematics 55. Walter De Gruyter, Berlin (2013). | DOI | MR | JFM
[4] Boccardo, L., Orsina, L.: Existence and regularity of minima for integral functionals noncoercive in the energy space. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 95-130. | MR | JFM
[5] Capone, C., Napoli, A. Passarelli di: Regularity results to a class of elliptic equations with explicit $u$-dependence and Orlicz growth. Adv. Differ. Equ. 29 (2024), 757-782. | DOI | MR | JFM
[6] Capone, C., Radice, T.: A regularity result for a class of elliptic equations with lower order terms. J. Elliptic Parabol. Equ. 6 (2020), 751-771. | DOI | MR | JFM
[7] Degiovanni, M., Marzocchi, M.: Quasilinear elliptic equations with natural growth and quasilinear elliptic equations with singular drift. Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 206-215. | DOI | MR | JFM
[8] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). | DOI | MR | JFM
[9] Li, Z.: Existence result to a parabolic equation with quadratic gradient term and an $L^1$ source. Acta Appl. Math. 163 (2019), 145-156. | DOI | MR | JFM
[10] Moreno-Mérida, L., Porzio, M. M.: Existence and asymptotic behavior of a parabolic equation with $L^1$ data. Asymptotic Anal. 118 (2020), 143-159. | DOI | MR | JFM
[11] Radice, T.: A regularity result for nonuniformly elliptic equations with lower order terms. Stud. Math. 276 (2024), 1-17. | DOI | MR | JFM
[12] Zhang, C., Zhou, S.: Bounded very weak solutions for some non-uniformly elliptic equation with $L^1$ datum. Ann. Acad. Sci. Fenn., Math. 42 (2017), 95-103. | DOI | MR | JFM
Cité par Sources :