Regularizing effect of the interplay between coefficients in some noncoercive integral functionals
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 915-925 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type $$ \mathcal {J} (v)= \int _\Omega j(x,v,\nabla v) {\rm d}x +\int _\Omega a(x) |v|^{2} {\rm d} x -\int _\Omega fv {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega ), $$ where $\Omega \subset \mathbb R^N$, $j$ is a Carathéodory function such that $\xi \mapsto j(x,s,\xi )$ is convex, and there exist constants $ 0\le \tau 1$ and $M>0$ such that $$ \frac { |\xi |^{2}}{(1+|s|)^{\tau }}\leq j(x,s,\xi )\leq M|\xi |^2 $$ for almost all $x\in \Omega $, all $s\in \mathbb R$ and all $\xi \in \mathbb R^N$. We show that, even if $0$ and $f(x)$ only belong to $L^{1}(\Omega )$, the interplay $$|f(x)|\leq 2 Qa(x) $$ implies the existence of a minimizer $u \in W_0^{1,2} (\Omega )$ which belongs to $L^{\infty }(\Omega )$.
We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type $$ \mathcal {J} (v)= \int _\Omega j(x,v,\nabla v) {\rm d}x +\int _\Omega a(x) |v|^{2} {\rm d} x -\int _\Omega fv {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega ), $$ where $\Omega \subset \mathbb R^N$, $j$ is a Carathéodory function such that $\xi \mapsto j(x,s,\xi )$ is convex, and there exist constants $ 0\le \tau 1$ and $M>0$ such that $$ \frac { |\xi |^{2}}{(1+|s|)^{\tau }}\leq j(x,s,\xi )\leq M|\xi |^2 $$ for almost all $x\in \Omega $, all $s\in \mathbb R$ and all $\xi \in \mathbb R^N$. We show that, even if $0$ and $f(x)$ only belong to $L^{1}(\Omega )$, the interplay $$|f(x)|\leq 2 Qa(x) $$ implies the existence of a minimizer $u \in W_0^{1,2} (\Omega )$ which belongs to $L^{\infty }(\Omega )$.
DOI : 10.21136/CMJ.2024.0216-24
Classification : 49J45
Keywords: regularizing effect; interplay; minimizer; noncoercive integral functional
@article{10_21136_CMJ_2024_0216_24,
     author = {Zhang, Aiping and Feng, Zesheng and Gao, Hongya},
     title = {Regularizing effect of the interplay between coefficients in some noncoercive integral functionals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {915--925},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0216-24},
     mrnumber = {4804968},
     zbl = {07953686},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/}
}
TY  - JOUR
AU  - Zhang, Aiping
AU  - Feng, Zesheng
AU  - Gao, Hongya
TI  - Regularizing effect of the interplay between coefficients in some noncoercive integral functionals
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 915
EP  - 925
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/
DO  - 10.21136/CMJ.2024.0216-24
LA  - en
ID  - 10_21136_CMJ_2024_0216_24
ER  - 
%0 Journal Article
%A Zhang, Aiping
%A Feng, Zesheng
%A Gao, Hongya
%T Regularizing effect of the interplay between coefficients in some noncoercive integral functionals
%J Czechoslovak Mathematical Journal
%D 2024
%P 915-925
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/
%R 10.21136/CMJ.2024.0216-24
%G en
%F 10_21136_CMJ_2024_0216_24
Zhang, Aiping; Feng, Zesheng; Gao, Hongya. Regularizing effect of the interplay between coefficients in some noncoercive integral functionals. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 915-925. doi: 10.21136/CMJ.2024.0216-24

Cité par Sources :