Regularizing effect of the interplay between coefficients in some noncoercive integral functionals
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 915-925
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type $$ \mathcal {J} (v)= \int _\Omega j(x,v,\nabla v) {\rm d}x +\int _\Omega a(x) |v|^{2} {\rm d} x -\int _\Omega fv {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega ), $$ where $\Omega \subset \mathbb R^N$, $j$ is a Carathéodory function such that $\xi \mapsto j(x,s,\xi )$ is convex, and there exist constants $ 0\le \tau 1$ and $M>0$ such that $$ \frac { |\xi |^{2}}{(1+|s|)^{\tau }}\leq j(x,s,\xi )\leq M|\xi |^2 $$ for almost all $x\in \Omega $, all $s\in \mathbb R$ and all $\xi \in \mathbb R^N$. We show that, even if $0
We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type $$ \mathcal {J} (v)= \int _\Omega j(x,v,\nabla v) {\rm d}x +\int _\Omega a(x) |v|^{2} {\rm d} x -\int _\Omega fv {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega ), $$ where $\Omega \subset \mathbb R^N$, $j$ is a Carathéodory function such that $\xi \mapsto j(x,s,\xi )$ is convex, and there exist constants $ 0\le \tau 1$ and $M>0$ such that $$ \frac { |\xi |^{2}}{(1+|s|)^{\tau }}\leq j(x,s,\xi )\leq M|\xi |^2 $$ for almost all $x\in \Omega $, all $s\in \mathbb R$ and all $\xi \in \mathbb R^N$. We show that, even if $0$ and $f(x)$ only belong to $L^{1}(\Omega )$, the interplay $$|f(x)|\leq 2 Qa(x) $$ implies the existence of a minimizer $u \in W_0^{1,2} (\Omega )$ which belongs to $L^{\infty }(\Omega )$.
DOI : 10.21136/CMJ.2024.0216-24
Classification : 49J45
Keywords: regularizing effect; interplay; minimizer; noncoercive integral functional
@article{10_21136_CMJ_2024_0216_24,
     author = {Zhang, Aiping and Feng, Zesheng and Gao, Hongya},
     title = {Regularizing effect of the interplay between coefficients in some noncoercive integral functionals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {915--925},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0216-24},
     mrnumber = {4804968},
     zbl = {07953686},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/}
}
TY  - JOUR
AU  - Zhang, Aiping
AU  - Feng, Zesheng
AU  - Gao, Hongya
TI  - Regularizing effect of the interplay between coefficients in some noncoercive integral functionals
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 915
EP  - 925
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/
DO  - 10.21136/CMJ.2024.0216-24
LA  - en
ID  - 10_21136_CMJ_2024_0216_24
ER  - 
%0 Journal Article
%A Zhang, Aiping
%A Feng, Zesheng
%A Gao, Hongya
%T Regularizing effect of the interplay between coefficients in some noncoercive integral functionals
%J Czechoslovak Mathematical Journal
%D 2024
%P 915-925
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/
%R 10.21136/CMJ.2024.0216-24
%G en
%F 10_21136_CMJ_2024_0216_24
Zhang, Aiping; Feng, Zesheng; Gao, Hongya. Regularizing effect of the interplay between coefficients in some noncoercive integral functionals. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 915-925. doi: 10.21136/CMJ.2024.0216-24

[1] Arcoya, D., Boccardo, L.: Regularizing effect of the interplay between coefficients in some elliptic equations. J. Func. Anal. 268 (2015), 1153-1166. | DOI | MR | JFM

[2] Arcoya, D., Boccardo, L.: Regularizing effect of $L^q$ interplay between coefficients in some elliptic equations. J. Math. Pures Appl. (9) 111 (2018), 106-125. | DOI | MR | JFM

[3] Boccardo, L., Croce, G.: Elliptic Partial Differential Equations: Existence and Regularity of Distributional Solutions. De Gruyter Studies in Mathematics 55. Walter De Gruyter, Berlin (2013). | DOI | MR | JFM

[4] Boccardo, L., Orsina, L.: Existence and regularity of minima for integral functionals noncoercive in the energy space. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 95-130. | MR | JFM

[5] Capone, C., Napoli, A. Passarelli di: Regularity results to a class of elliptic equations with explicit $u$-dependence and Orlicz growth. Adv. Differ. Equ. 29 (2024), 757-782. | DOI | MR | JFM

[6] Capone, C., Radice, T.: A regularity result for a class of elliptic equations with lower order terms. J. Elliptic Parabol. Equ. 6 (2020), 751-771. | DOI | MR | JFM

[7] Degiovanni, M., Marzocchi, M.: Quasilinear elliptic equations with natural growth and quasilinear elliptic equations with singular drift. Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 206-215. | DOI | MR | JFM

[8] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). | DOI | MR | JFM

[9] Li, Z.: Existence result to a parabolic equation with quadratic gradient term and an $L^1$ source. Acta Appl. Math. 163 (2019), 145-156. | DOI | MR | JFM

[10] Moreno-Mérida, L., Porzio, M. M.: Existence and asymptotic behavior of a parabolic equation with $L^1$ data. Asymptotic Anal. 118 (2020), 143-159. | DOI | MR | JFM

[11] Radice, T.: A regularity result for nonuniformly elliptic equations with lower order terms. Stud. Math. 276 (2024), 1-17. | DOI | MR | JFM

[12] Zhang, C., Zhou, S.: Bounded very weak solutions for some non-uniformly elliptic equation with $L^1$ datum. Ann. Acad. Sci. Fenn., Math. 42 (2017), 95-103. | DOI | MR | JFM

Cité par Sources :