Regularizing effect of the interplay between coefficients in some noncoercive integral functionals
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 915-925
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type $$ \mathcal {J} (v)= \int _\Omega j(x,v,\nabla v) {\rm d}x +\int _\Omega a(x) |v|^{2} {\rm d} x -\int _\Omega fv {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega ), $$ where $\Omega \subset \mathbb R^N$, $j$ is a Carathéodory function such that $\xi \mapsto j(x,s,\xi )$ is convex, and there exist constants $ 0\le \tau 1$ and $M>0$ such that $$ \frac { |\xi |^{2}}{(1+|s|)^{\tau }}\leq j(x,s,\xi )\leq M|\xi |^2 $$ for almost all $x\in \Omega $, all $s\in \mathbb R$ and all $\xi \in \mathbb R^N$. We show that, even if $0$ and $f(x)$ only belong to $L^{1}(\Omega )$, the interplay $$|f(x)|\leq 2 Qa(x) $$ implies the existence of a minimizer $u \in W_0^{1,2} (\Omega )$ which belongs to $L^{\infty }(\Omega )$.
We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type $$ \mathcal {J} (v)= \int _\Omega j(x,v,\nabla v) {\rm d}x +\int _\Omega a(x) |v|^{2} {\rm d} x -\int _\Omega fv {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega ), $$ where $\Omega \subset \mathbb R^N$, $j$ is a Carathéodory function such that $\xi \mapsto j(x,s,\xi )$ is convex, and there exist constants $ 0\le \tau 1$ and $M>0$ such that $$ \frac { |\xi |^{2}}{(1+|s|)^{\tau }}\leq j(x,s,\xi )\leq M|\xi |^2 $$ for almost all $x\in \Omega $, all $s\in \mathbb R$ and all $\xi \in \mathbb R^N$. We show that, even if $0$ and $f(x)$ only belong to $L^{1}(\Omega )$, the interplay $$|f(x)|\leq 2 Qa(x) $$ implies the existence of a minimizer $u \in W_0^{1,2} (\Omega )$ which belongs to $L^{\infty }(\Omega )$.
DOI :
10.21136/CMJ.2024.0216-24
Classification :
49J45
Keywords: regularizing effect; interplay; minimizer; noncoercive integral functional
Keywords: regularizing effect; interplay; minimizer; noncoercive integral functional
@article{10_21136_CMJ_2024_0216_24,
author = {Zhang, Aiping and Feng, Zesheng and Gao, Hongya},
title = {Regularizing effect of the interplay between coefficients in some noncoercive integral functionals},
journal = {Czechoslovak Mathematical Journal},
pages = {915--925},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0216-24},
mrnumber = {4804968},
zbl = {07953686},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/}
}
TY - JOUR AU - Zhang, Aiping AU - Feng, Zesheng AU - Gao, Hongya TI - Regularizing effect of the interplay between coefficients in some noncoercive integral functionals JO - Czechoslovak Mathematical Journal PY - 2024 SP - 915 EP - 925 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/ DO - 10.21136/CMJ.2024.0216-24 LA - en ID - 10_21136_CMJ_2024_0216_24 ER -
%0 Journal Article %A Zhang, Aiping %A Feng, Zesheng %A Gao, Hongya %T Regularizing effect of the interplay between coefficients in some noncoercive integral functionals %J Czechoslovak Mathematical Journal %D 2024 %P 915-925 %V 74 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0216-24/ %R 10.21136/CMJ.2024.0216-24 %G en %F 10_21136_CMJ_2024_0216_24
Zhang, Aiping; Feng, Zesheng; Gao, Hongya. Regularizing effect of the interplay between coefficients in some noncoercive integral functionals. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 915-925. doi: 10.21136/CMJ.2024.0216-24
Cité par Sources :