Homological dimensions for endomorphism algebras of Gorenstein projective modules
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 675-682 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A$ be a CM-finite Artin algebra with a Gorenstein-Auslander generator $E$, $M$ be a Gorenstein projective $A$-module and $B = {\rm End}_A M$. We give an upper bound for the finitistic dimension of $B$ in terms of homological data of $M$. Furthermore, if $A$ is $n$-Gorenstein for $2 \leq n \infty $, then we show the global dimension of $B$ is less than or equal to $n$ plus the $B$-projective dimension of ${\rm Hom}_A(M, E).$ As an application, the global dimension of ${\rm End}_A E$ is less than or equal to $n$.
Let $A$ be a CM-finite Artin algebra with a Gorenstein-Auslander generator $E$, $M$ be a Gorenstein projective $A$-module and $B = {\rm End}_A M$. We give an upper bound for the finitistic dimension of $B$ in terms of homological data of $M$. Furthermore, if $A$ is $n$-Gorenstein for $2 \leq n \infty $, then we show the global dimension of $B$ is less than or equal to $n$ plus the $B$-projective dimension of ${\rm Hom}_A(M, E).$ As an application, the global dimension of ${\rm End}_A E$ is less than or equal to $n$.
DOI : 10.21136/CMJ.2024.0199-23
Classification : 16E10, 16G10
Keywords: finitistic dimension; Gorenstein projective module; endomorphism algebra
@article{10_21136_CMJ_2024_0199_23,
     author = {Zhang, Aiping and Lei, Xueping},
     title = {Homological dimensions for endomorphism algebras of {Gorenstein} projective modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {675--682},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0199-23},
     mrnumber = {4804953},
     zbl = {07953671},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0199-23/}
}
TY  - JOUR
AU  - Zhang, Aiping
AU  - Lei, Xueping
TI  - Homological dimensions for endomorphism algebras of Gorenstein projective modules
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 675
EP  - 682
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0199-23/
DO  - 10.21136/CMJ.2024.0199-23
LA  - en
ID  - 10_21136_CMJ_2024_0199_23
ER  - 
%0 Journal Article
%A Zhang, Aiping
%A Lei, Xueping
%T Homological dimensions for endomorphism algebras of Gorenstein projective modules
%J Czechoslovak Mathematical Journal
%D 2024
%P 675-682
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0199-23/
%R 10.21136/CMJ.2024.0199-23
%G en
%F 10_21136_CMJ_2024_0199_23
Zhang, Aiping; Lei, Xueping. Homological dimensions for endomorphism algebras of Gorenstein projective modules. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 675-682. doi: 10.21136/CMJ.2024.0199-23

Cité par Sources :