Keywords: finitistic dimension; Gorenstein projective module; endomorphism algebra
@article{10_21136_CMJ_2024_0199_23,
author = {Zhang, Aiping and Lei, Xueping},
title = {Homological dimensions for endomorphism algebras of {Gorenstein} projective modules},
journal = {Czechoslovak Mathematical Journal},
pages = {675--682},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0199-23},
mrnumber = {4804953},
zbl = {07953671},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0199-23/}
}
TY - JOUR AU - Zhang, Aiping AU - Lei, Xueping TI - Homological dimensions for endomorphism algebras of Gorenstein projective modules JO - Czechoslovak Mathematical Journal PY - 2024 SP - 675 EP - 682 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0199-23/ DO - 10.21136/CMJ.2024.0199-23 LA - en ID - 10_21136_CMJ_2024_0199_23 ER -
%0 Journal Article %A Zhang, Aiping %A Lei, Xueping %T Homological dimensions for endomorphism algebras of Gorenstein projective modules %J Czechoslovak Mathematical Journal %D 2024 %P 675-682 %V 74 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0199-23/ %R 10.21136/CMJ.2024.0199-23 %G en %F 10_21136_CMJ_2024_0199_23
Zhang, Aiping; Lei, Xueping. Homological dimensions for endomorphism algebras of Gorenstein projective modules. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 675-682. doi: 10.21136/CMJ.2024.0199-23
[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94. AMS, Providence (1969). | DOI | MR | JFM
[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM
[3] Avramov, L. L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. | DOI | MR | JFM
[4] Christensen, L. W.: Gorenstein Dimension. Lecture Notes in Mathematics 1747. Springer, Berlin (2000). | DOI | MR | JFM
[5] Christensen, L. W., Foxby, H.-B., Frankild, A.: Restricted homological dimensions and Cohen-Macaulayness. J. Algebra 251 (2002), 479-502. | DOI | MR | JFM
[6] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions -- a functorial description with applications. J. Algebra 302 (2006), 231-279. | DOI | MR | JFM
[7] Dlab, V., Ringel, C. M.: Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring. Proc. Am. Math. Soc. 107 (1989), 1-5. | DOI | MR | JFM
[8] Enochs, E. E., Jenda, O. M. G.: On Gorenstein injective modules. Commun. Algebra 21 (1993), 3489-3501. | DOI | MR | JFM
[9] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. | DOI | MR | JFM
[10] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). | DOI | MR | JFM
[11] Enochs, E. E., Jenda, O. M. G., Xu, J.: Foxby duality and Gorenstein injective and projective modules. Trans. Am. Math. Soc. 348 (1996), 3223-3234. | DOI | MR | JFM
[12] Eshraghi, H.: Representation dimension via tilting theory. J. Algebra 494 (2018), 77-91. | DOI | MR | JFM
[13] Foxby, H.-B.: Gorenstein dimensions over Cohen-Macaulay rings. Commutative Algebra Runge. Vechtaer Universitätsschriften, Cloppenburg (1994), 59-63. | JFM
[14] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | JFM
[15] Huang, C., Huang, Z.: Gorenstein syzygy modules. J. Algebra 324 (2010), 3408-3419. | DOI | MR | JFM
[16] Huang, Z., Sun, J.: Endomorphism algebras and Igusa-Todorov algebras. Acta Math. Hung. 140 (2013), 60-70. | DOI | MR | JFM
[17] Igusa, K., Todorov, G.: On the finitistic global dimension conjecture for Artin algebras. Representations of Algebras and Related Topics Fields Institute Communications 45. AMS, Providence (2005), 201-204. | DOI | MR | JFM
[18] Li, Z.-W., Zhang, P.: Gorenstein algebras of finite Cohen-Macaulay type. Adv. Math. 223 (2010), 728-734. | DOI | MR | JFM
[19] Psaroudakis, C.: Homological theory of recollements of abelian categories. J. Algebra 398 (2014), 63-110. | DOI | MR | JFM
[20] Wei, J.: Finitistic dimension and restricted flat dimension. J. Algebra 320 (2008), 116-127. | DOI | MR | JFM
[21] Xi, C.: On the finitistic dimension conjecture. III. Related to the pair $eAe \subseteq A$. J. Algebra 319 (2008), 3666-3688. | DOI | MR | JFM
[22] Xu, D.: Homological dimensions and strongly idempotent ideals. J. Algebra 44 (2014), 175-189. | DOI | MR | JFM
[23] Zhang, A.: Endomorphism algebras of Gorenstein projective modules. J. Algebra Appl. 17 (2018), Article ID 1850177, 6 pages. | DOI | MR | JFM
[24] Zhang, A., Zhang, S.: On the finitistic dimension conjecture of Artin algebras. J. Algebra 320 (2008), 253-258. | DOI | MR | JFM
[25] Zhang, P.: Triangulated Categories and Derived Categories. Science Press, Beijing (2015), Chinese.
Cité par Sources :