The relationship between $K_u^2\cap vH^2$ and inner functions
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1221-1240
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline {u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$ $(v\neq u)$. If $K_u^2\cap vH^2\neq \{0\}$, then there exists a triple $(B,b,g)$ such that $$\overline {u}v=\frac {\lambda b\overline {BO_g}}{g},$$ where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\neq \{0\}.$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline {u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$ $(v\neq u)$. If $K_u^2\cap vH^2\neq \{0\}$, then there exists a triple $(B,b,g)$ such that $$\overline {u}v=\frac {\lambda b\overline {BO_g}}{g},$$ where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\neq \{0\}.$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
DOI : 10.21136/CMJ.2024.0175-24
Classification : 30J05, 47A15, 47B35
Keywords: model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function
@article{10_21136_CMJ_2024_0175_24,
     author = {Yang, Xiaoyuan},
     title = {The relationship between $K_u^2\cap vH^2$ and inner functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1221--1240},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0175-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-24/}
}
TY  - JOUR
AU  - Yang, Xiaoyuan
TI  - The relationship between $K_u^2\cap vH^2$ and inner functions
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1221
EP  - 1240
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-24/
DO  - 10.21136/CMJ.2024.0175-24
LA  - en
ID  - 10_21136_CMJ_2024_0175_24
ER  - 
%0 Journal Article
%A Yang, Xiaoyuan
%T The relationship between $K_u^2\cap vH^2$ and inner functions
%J Czechoslovak Mathematical Journal
%D 2024
%P 1221-1240
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-24/
%R 10.21136/CMJ.2024.0175-24
%G en
%F 10_21136_CMJ_2024_0175_24
Yang, Xiaoyuan. The relationship between $K_u^2\cap vH^2$ and inner functions. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1221-1240. doi: 10.21136/CMJ.2024.0175-24

[1] Axler, S., Chang, S. A., Sarason, D.: Products of Toeplitz operators. Integral Equations Oper. Theory 1 (1978), 285-309. | DOI | MR | JFM

[2] Benhida, C., Fricain, E., Timotin, D.: Reducing subspaces of $C_{00}$ contractions. New York J. Math. 27 (2021), 1597-1612. | MR | JFM

[3] Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math., Uppsala 81 (1949), 239-255. | DOI | MR | JFM

[4] Câmara, M. C., Partington, J. R.: Multipliers and equivalences between Toeplitz kernels. J. Math. Anal. Appl. 465 (2018), 557-570. | DOI | MR | JFM

[5] Câmara, M. C., Partington, J. R.: Toeplitz kernels and model spaces. The Diversity and Beauty of Applied Operator Theory Operator Theory: Advances and Applications 268. Springer, Cham (2018), 139-153. | DOI | MR

[6] Douglas, R. G.: Banach Algebra Techniques in the Theory of Toeplitz Operators. Regional Conference Series in Mathematics 15. AMS, Providence (1973). | DOI | MR | JFM

[7] Fricain, E., Hartmann, A., Ross, W. T.: Multipliers between model spaces. Stud. Math. 240 (2018), 177-191. | DOI | MR | JFM

[8] Garcia, S. R., Ross, W. T.: Model spaces: A survey. Invariant Subspaces of the Shift Operator Contemporary Mathematics 638. AMS, Providence (2015), 197-245. | DOI | MR | JFM

[9] Garnett, J. B.: Bounded Analytic Functions. Graduate Texts in Mathematics 236. Springer, New York (2007). | DOI | MR | JFM

[10] Hartmann, A., Mitkovski, M.: Kernels of Toeplitz operators. Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions Contemporary Mathematics 679. AMS, Providence (2016), 147-177. | DOI | MR | JFM

[11] Hayashi, E.: The kernel of a Toeplitz operator. Integral Equations Oper. Theory 9 (1986), 588-591. | DOI | MR | JFM

[12] Martínez-Avendaño, R. A., Rosenthal, P.: An Introduction to Operators on the Hardy-Hilbert Space. Graduate Texts in Mathematics 237. Springer, New York (2007). | DOI | MR | JFM

[13] Nikolski, N. K.: Operators, Functions, and Systems: An Easy Reading. Volume 1. Hardy, Hankel, and Toeplitz. Mathematical Surveys and Monographs 92. AMS, Providence (2002). | DOI | MR | JFM

[14] Sarason, D.: Algebraic properties of truncated Toeplitz operators. Oper. Matrices 1 (2007), 491-526. | DOI | MR | JFM

[15] Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space. Universitext. Springer, New York (2010). | DOI | MR | JFM

[16] Yang, X.: The relationship between model spaces and the invariant subspaces of the unilateral shift operator. Contemp. Math. 5 (2024), 1474-1486. | DOI

[17] Yang, X., Li, R., Lu, Y.: The kernel spaces and Fredholmness of truncated Toeplitz operators. Turk. J. Math. 45 (2021), 2180-2198. | DOI | MR | JFM

[18] Yang, X., Li, R., Yang, Y., Lu, Y.: Finite-rank and compact defect operators of truncated Toeplitz operators. J. Math. Anal. Appl. 510 (2022), Article ID 126032, 26 pages. | DOI | MR | JFM

[19] Yang, X., Lu, Y., Yang, Y.: Compact commutators of truncated Toeplitz operators on the model space. Ann. Funct. Anal. 13 (2022), Article ID 49, 21 pages. | DOI | MR | JFM

Cité par Sources :