The relationship between $K_u^2\cap vH^2$ and inner functions
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1221-1240
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline {u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$ $(v\neq u)$. If $K_u^2\cap vH^2\neq \{0\}$, then there exists a triple $(B,b,g)$ such that $$\overline {u}v=\frac {\lambda b\overline {BO_g}}{g},$$ where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\neq \{0\}.$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline {u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$ $(v\neq u)$. If $K_u^2\cap vH^2\neq \{0\}$, then there exists a triple $(B,b,g)$ such that $$\overline {u}v=\frac {\lambda b\overline {BO_g}}{g},$$ where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\neq \{0\}.$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
Classification :
30J05, 47A15, 47B35
Keywords: model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function
Keywords: model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function
@article{10_21136_CMJ_2024_0175_24,
author = {Yang, Xiaoyuan},
title = {The relationship between $K_u^2\cap vH^2$ and inner functions},
journal = {Czechoslovak Mathematical Journal},
pages = {1221--1240},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0175-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-24/}
}
TY - JOUR AU - Yang, Xiaoyuan TI - The relationship between $K_u^2\cap vH^2$ and inner functions JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1221 EP - 1240 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-24/ DO - 10.21136/CMJ.2024.0175-24 LA - en ID - 10_21136_CMJ_2024_0175_24 ER -
%0 Journal Article %A Yang, Xiaoyuan %T The relationship between $K_u^2\cap vH^2$ and inner functions %J Czechoslovak Mathematical Journal %D 2024 %P 1221-1240 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-24/ %R 10.21136/CMJ.2024.0175-24 %G en %F 10_21136_CMJ_2024_0175_24
Yang, Xiaoyuan. The relationship between $K_u^2\cap vH^2$ and inner functions. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1221-1240. doi: 10.21136/CMJ.2024.0175-24
Cité par Sources :