The relationship between $K_u^2\cap vH^2$ and inner functions
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1221-1240 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline {u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$ $(v\neq u)$. If $K_u^2\cap vH^2\neq \{0\}$, then there exists a triple $(B,b,g)$ such that $$\overline {u}v=\frac {\lambda b\overline {BO_g}}{g},$$ where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\neq \{0\}.$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline {u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$ $(v\neq u)$. If $K_u^2\cap vH^2\neq \{0\}$, then there exists a triple $(B,b,g)$ such that $$\overline {u}v=\frac {\lambda b\overline {BO_g}}{g},$$ where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\neq \{0\}.$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
DOI : 10.21136/CMJ.2024.0175-24
Classification : 30J05, 47A15, 47B35
Keywords: model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function
@article{10_21136_CMJ_2024_0175_24,
     author = {Yang, Xiaoyuan},
     title = {The relationship between $K_u^2\cap vH^2$ and inner functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1221--1240},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0175-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-24/}
}
TY  - JOUR
AU  - Yang, Xiaoyuan
TI  - The relationship between $K_u^2\cap vH^2$ and inner functions
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1221
EP  - 1240
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-24/
DO  - 10.21136/CMJ.2024.0175-24
LA  - en
ID  - 10_21136_CMJ_2024_0175_24
ER  - 
%0 Journal Article
%A Yang, Xiaoyuan
%T The relationship between $K_u^2\cap vH^2$ and inner functions
%J Czechoslovak Mathematical Journal
%D 2024
%P 1221-1240
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-24/
%R 10.21136/CMJ.2024.0175-24
%G en
%F 10_21136_CMJ_2024_0175_24
Yang, Xiaoyuan. The relationship between $K_u^2\cap vH^2$ and inner functions. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1221-1240. doi: 10.21136/CMJ.2024.0175-24

Cité par Sources :