Keywords: Green-Liouville approximation; correct solvability; general Sturm-Liouville equation
@article{10_21136_CMJ_2024_0175_23,
author = {Chernyavskaya, Nina and Shuster, Leonid},
title = {Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general {Sturm-Liouville} equation},
journal = {Czechoslovak Mathematical Journal},
pages = {247--272},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2024.0175-23},
mrnumber = {4717832},
zbl = {07893377},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-23/}
}
TY - JOUR AU - Chernyavskaya, Nina AU - Shuster, Leonid TI - Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general Sturm-Liouville equation JO - Czechoslovak Mathematical Journal PY - 2024 SP - 247 EP - 272 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-23/ DO - 10.21136/CMJ.2024.0175-23 LA - en ID - 10_21136_CMJ_2024_0175_23 ER -
%0 Journal Article %A Chernyavskaya, Nina %A Shuster, Leonid %T Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general Sturm-Liouville equation %J Czechoslovak Mathematical Journal %D 2024 %P 247-272 %V 74 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-23/ %R 10.21136/CMJ.2024.0175-23 %G en %F 10_21136_CMJ_2024_0175_23
Chernyavskaya, Nina; Shuster, Leonid. Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general Sturm-Liouville equation. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 247-272. doi: 10.21136/CMJ.2024.0175-23
[1] Chernyavskaya, N. A., Shuster, L. A.: On the WKB-method. Differ. Uravn. 25 (1989), 1826-1829 Russian. | MR | JFM
[2] Chernyavskaya, N., Shuster, L.: Necessary and sufficient conditions for the solvability of a problem of Hartman and Wintner. Proc. Am. Math. Soc. 125 (1997), 3213-3228. | DOI | MR | JFM
[3] Chernyavskaya, N., Shuster, L.: Estimates for the Green function of a general Sturm- Liouville operator and their applications. Proc. Am. Math. Soc. 127 (1999), 1413-1426. | DOI | MR | JFM
[4] Chernyavskaya, N., Shuster, L.: Regularity of the inversion problem for a Sturm-Liouville equation in $L_p(\Bbb R)$. Methods Appl. Anal. 7 (2000), 65-84. | DOI | MR | JFM
[5] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability of the Sturm-Liouville equation in the space $L_p(\Bbb R)$. Proc. Am. Math. Soc. 130 (2002), 1043-1054. | DOI | MR | JFM
[6] Chernyavskaya, N. A., Shuster, L. A.: Conditions for correct solvability of a simplest singular boundary value problem of general form. I. Z. Anal. Anwend. 25 (2006), 205-235. | DOI | MR | JFM
[7] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability in $L_p(\Bbb R)$ of a general Sturm-Liouville equation. J. Lond. Math. Soc., II. Ser. 80 (2009), 99-120. | DOI | MR | JFM
[8] Chernyavskaya, N. A., Shuster, L. A.: Methods of analysis of the condition for correct solvability in $L_p(\Bbb R)$ of general Sturm-Liouville equations. Czech. Math. J. 64 (2014), 1067-1098. | DOI | MR | JFM
[9] Chernyavskaya, N., Shuster, L.: Criteria for correct solvability of a general Sturm-Liouville equation in the space $L_1(\Bbb R)$. Boll. Unione Mat. Ital. 11 (2018), 417-443. | DOI | MR | JFM
[10] Chernyavskaya, N., Shuster, L.: Principal fundamental system of solutions, the Hartman-Wintner problem and correct solvability of the general Sturm-Liouville equation. Available at , 29 pages. | arXiv | DOI | MR
[11] Davies, E. B., Harrell, E. M.: Conformally flat Riemannian metrics, Schrödinger operators, and semiclassical approximation. J. Differ. Equations 66 (1987), 165-188. | DOI | MR | JFM
[12] Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York (1964). | MR | JFM
[13] Mynbaev, K. T., Otelbaev, M. O.: Weighted Functional Spaces and the Spectrum of Differential Operators. Nauka, Moscow (1988), Russian. | MR | JFM
[14] Olver, F. W. J.: Asymptotics and Special Functions. Academic Press, New York (1974). | DOI | MR | JFM
[15] Titchmarsh, E. C.: The Theory of Functions. Oxford University Press, Oxford (1932). | MR | JFM
[16] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis: An Introduction to the General Theory on Infinite Processes and of Analytic Functions. Cambridge University Press, Cambridge (1962). | DOI | MR | JFM
Cité par Sources :