Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general Sturm-Liouville equation
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 247-272
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the equation $$ -(r(x) y'(x))'+q(x)y(x)=f(x),\quad x\in \mathbb R, $$ where $f\in L_p(\mathbb R)$, $p\in (1,\infty )$ and $$ r>0,\quad \frac {1}{r}\in L_1^{\rm loc}(\mathbb R),\quad q\in L_1^{\rm loc}(\mathbb R). $$ For particular equations of this form, we suggest some methods for the study of the question on requirements to the functions $r$ and $q$ under which the above equation is correctly solvable in the space $L_p(\mathbb R),$ $p\in (1,\infty ).$
We consider the equation $$ -(r(x) y'(x))'+q(x)y(x)=f(x),\quad x\in \mathbb R, $$ where $f\in L_p(\mathbb R)$, $p\in (1,\infty )$ and $$ r>0,\quad \frac {1}{r}\in L_1^{\rm loc}(\mathbb R),\quad q\in L_1^{\rm loc}(\mathbb R). $$ For particular equations of this form, we suggest some methods for the study of the question on requirements to the functions $r$ and $q$ under which the above equation is correctly solvable in the space $L_p(\mathbb R),$ $p\in (1,\infty ).$
DOI : 10.21136/CMJ.2024.0175-23
Classification : 34B24, 34B27
Keywords: Green-Liouville approximation; correct solvability; general Sturm-Liouville equation
@article{10_21136_CMJ_2024_0175_23,
     author = {Chernyavskaya, Nina and Shuster, Leonid},
     title = {Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general {Sturm-Liouville} equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {247--272},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2024.0175-23},
     mrnumber = {4717832},
     zbl = {07893377},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-23/}
}
TY  - JOUR
AU  - Chernyavskaya, Nina
AU  - Shuster, Leonid
TI  - Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general Sturm-Liouville equation
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 247
EP  - 272
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-23/
DO  - 10.21136/CMJ.2024.0175-23
LA  - en
ID  - 10_21136_CMJ_2024_0175_23
ER  - 
%0 Journal Article
%A Chernyavskaya, Nina
%A Shuster, Leonid
%T Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general Sturm-Liouville equation
%J Czechoslovak Mathematical Journal
%D 2024
%P 247-272
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0175-23/
%R 10.21136/CMJ.2024.0175-23
%G en
%F 10_21136_CMJ_2024_0175_23
Chernyavskaya, Nina; Shuster, Leonid. Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general Sturm-Liouville equation. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 247-272. doi: 10.21136/CMJ.2024.0175-23

[1] Chernyavskaya, N. A., Shuster, L. A.: On the WKB-method. Differ. Uravn. 25 (1989), 1826-1829 Russian. | MR | JFM

[2] Chernyavskaya, N., Shuster, L.: Necessary and sufficient conditions for the solvability of a problem of Hartman and Wintner. Proc. Am. Math. Soc. 125 (1997), 3213-3228. | DOI | MR | JFM

[3] Chernyavskaya, N., Shuster, L.: Estimates for the Green function of a general Sturm- Liouville operator and their applications. Proc. Am. Math. Soc. 127 (1999), 1413-1426. | DOI | MR | JFM

[4] Chernyavskaya, N., Shuster, L.: Regularity of the inversion problem for a Sturm-Liouville equation in $L_p(\Bbb R)$. Methods Appl. Anal. 7 (2000), 65-84. | DOI | MR | JFM

[5] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability of the Sturm-Liouville equation in the space $L_p(\Bbb R)$. Proc. Am. Math. Soc. 130 (2002), 1043-1054. | DOI | MR | JFM

[6] Chernyavskaya, N. A., Shuster, L. A.: Conditions for correct solvability of a simplest singular boundary value problem of general form. I. Z. Anal. Anwend. 25 (2006), 205-235. | DOI | MR | JFM

[7] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability in $L_p(\Bbb R)$ of a general Sturm-Liouville equation. J. Lond. Math. Soc., II. Ser. 80 (2009), 99-120. | DOI | MR | JFM

[8] Chernyavskaya, N. A., Shuster, L. A.: Methods of analysis of the condition for correct solvability in $L_p(\Bbb R)$ of general Sturm-Liouville equations. Czech. Math. J. 64 (2014), 1067-1098. | DOI | MR | JFM

[9] Chernyavskaya, N., Shuster, L.: Criteria for correct solvability of a general Sturm-Liouville equation in the space $L_1(\Bbb R)$. Boll. Unione Mat. Ital. 11 (2018), 417-443. | DOI | MR | JFM

[10] Chernyavskaya, N., Shuster, L.: Principal fundamental system of solutions, the Hartman-Wintner problem and correct solvability of the general Sturm-Liouville equation. Available at , 29 pages. | arXiv | DOI | MR

[11] Davies, E. B., Harrell, E. M.: Conformally flat Riemannian metrics, Schrödinger operators, and semiclassical approximation. J. Differ. Equations 66 (1987), 165-188. | DOI | MR | JFM

[12] Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York (1964). | MR | JFM

[13] Mynbaev, K. T., Otelbaev, M. O.: Weighted Functional Spaces and the Spectrum of Differential Operators. Nauka, Moscow (1988), Russian. | MR | JFM

[14] Olver, F. W. J.: Asymptotics and Special Functions. Academic Press, New York (1974). | DOI | MR | JFM

[15] Titchmarsh, E. C.: The Theory of Functions. Oxford University Press, Oxford (1932). | MR | JFM

[16] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis: An Introduction to the General Theory on Infinite Processes and of Analytic Functions. Cambridge University Press, Cambridge (1962). | DOI | MR | JFM

Cité par Sources :