New bounds on the Laplacian spectral ratio of connected graphs
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1207-1220
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a simple connected undirected graph. The Laplacian spectral ratio of $G$ is defined as the quotient between the largest and second smallest Laplacian eigenvalues of $G$, which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with $n$ vertices, which improves some known results of Z. You and B. Liu (2012).
Let $G$ be a simple connected undirected graph. The Laplacian spectral ratio of $G$ is defined as the quotient between the largest and second smallest Laplacian eigenvalues of $G$, which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with $n$ vertices, which improves some known results of Z. You and B. Liu (2012).
DOI : 10.21136/CMJ.2024.0170-24
Classification : 05C05, 05C50
Keywords: Laplacian eigenvalue; ratio; tree; bound
@article{10_21136_CMJ_2024_0170_24,
     author = {Lin, Zhen and Cai, Min and Wang, Jiajia},
     title = {New bounds on the {Laplacian} spectral ratio of connected graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1207--1220},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0170-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0170-24/}
}
TY  - JOUR
AU  - Lin, Zhen
AU  - Cai, Min
AU  - Wang, Jiajia
TI  - New bounds on the Laplacian spectral ratio of connected graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1207
EP  - 1220
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0170-24/
DO  - 10.21136/CMJ.2024.0170-24
LA  - en
ID  - 10_21136_CMJ_2024_0170_24
ER  - 
%0 Journal Article
%A Lin, Zhen
%A Cai, Min
%A Wang, Jiajia
%T New bounds on the Laplacian spectral ratio of connected graphs
%J Czechoslovak Mathematical Journal
%D 2024
%P 1207-1220
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0170-24/
%R 10.21136/CMJ.2024.0170-24
%G en
%F 10_21136_CMJ_2024_0170_24
Lin, Zhen; Cai, Min; Wang, Jiajia. New bounds on the Laplacian spectral ratio of connected graphs. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1207-1220. doi: 10.21136/CMJ.2024.0170-24

[1] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469 (2008), 93-153. | DOI | MR

[2] Barahona, M., Pecora, L. M.: Synchronization in small-world networks. Phys. Rev. Lett. 89 (2002), Article ID 054101. | DOI

[3] Barrett, W., Evans, E., Hall, H. T., Kempton, M.: New conjectures on algebraic connectivity and the Laplacian spread of graphs. Linear Algebra Appl. 648 (2022), 104-132. | DOI | MR | JFM

[4] Brouwer, A. E., Haemers, W. H.: Eigenvalues and perfect matchings. Linear Algebra Appl. 395 (2005), 155-162. | DOI | MR | JFM

[5] Chen, X., Das, K. C.: Some results on the Laplacian spread of a graph. Linear Algebra Appl. 505 (2016), 245-260. | DOI | MR | JFM

[6] Chvátal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5 (1973), 215-228. | DOI | MR | JFM

[7] Cirtoaje, V.: The best lower bound depended on two fixed variables for Jensen's inequality with ordered variables. J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. | DOI | MR | JFM

[8] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). | DOI | MR | JFM

[9] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | DOI | MR | JFM

[10] Filho, D. F. T., Justel, C. M.: About the type of broom trees. Comput. Appl. Math. 42 (2023), Article ID 364, 12 pages. | DOI | MR | JFM

[11] Furtula, B., Gutman, I.: A forgotten topological index. J. Math. Chem. 53 (2015), 1184-1190. | DOI | MR | JFM

[12] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs. Linear Algebra Appl. 416 (2006), 68-74. | DOI | MR | JFM

[13] Grone, R., Merris, R.: The Laplacian spectrum of a graph. II. SIAM J. Discrete Math. 7 (1994), 221-229. | DOI | MR | JFM

[14] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. | DOI | MR | JFM

[15] Gu, X., Liu, M.: A tight lower bound on the matching number of graphs via Laplacian eigenvalues. Eur. J. Comb. 101 (2022), Article ID 103468, 8 pages. | DOI | MR | JFM

[16] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals: Total $\varphi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. | DOI

[17] Haemers, W. H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. | DOI | MR | JFM

[18] Kelmans, A. K.: The properties of the characteristic polynomial of a graph. Cybernetics-in the service of Communism 4 (1967), 27-41 Russian. | MR | JFM

[19] Liu, B., Chen, S.: Algebraic conditions for $t$-tough graphs. Czech. Math. J. 60 (2010), 1079-1089. | DOI | MR | JFM

[20] Watson, G. S.: Serial correlation in regression analysis. I. Biometrika 42 (1955), 327-341. | DOI | MR | JFM

[21] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs. Appl. Math. Lett. 25 (2012), 1245-1250. | DOI | MR | JFM

[22] Zhang, X.-D.: Ordering trees with algebraic connectivity and diameter. Linear Algebra Appl. 427 (2007), 301-312. | DOI | MR | JFM

[23] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs. Linear Algebra Appl. 429 (2008), 2239-2246. | DOI | MR | JFM

Cité par Sources :