Keywords: system of congruence; restricted linear congruence; Ramanujan sum; discrete Fourier transform
@article{10_21136_CMJ_2024_0151_24,
author = {Babu, Chinnakonda Gnanamoorthy Karthick and Bera, Ranjan and Sury, Balasubramanian},
title = {Linear congruences and a conjecture of {Bibak}},
journal = {Czechoslovak Mathematical Journal},
pages = {1185--1206},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0151-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0151-24/}
}
TY - JOUR AU - Babu, Chinnakonda Gnanamoorthy Karthick AU - Bera, Ranjan AU - Sury, Balasubramanian TI - Linear congruences and a conjecture of Bibak JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1185 EP - 1206 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0151-24/ DO - 10.21136/CMJ.2024.0151-24 LA - en ID - 10_21136_CMJ_2024_0151_24 ER -
%0 Journal Article %A Babu, Chinnakonda Gnanamoorthy Karthick %A Bera, Ranjan %A Sury, Balasubramanian %T Linear congruences and a conjecture of Bibak %J Czechoslovak Mathematical Journal %D 2024 %P 1185-1206 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0151-24/ %R 10.21136/CMJ.2024.0151-24 %G en %F 10_21136_CMJ_2024_0151_24
Babu, Chinnakonda Gnanamoorthy Karthick; Bera, Ranjan; Sury, Balasubramanian. Linear congruences and a conjecture of Bibak. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1185-1206. doi: 10.21136/CMJ.2024.0151-24
[1] Bibak, K.: Order-restricted linear congruences. Discrete Math. 343 (2020), Article ID 111690, 4 pages. | DOI | MR | JFM
[2] Bibak, K., Kapron, B. M., Srinivasan, V.: Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT. Nucl. Phys., B 910 (2016), 712-723. | DOI | MR | JFM
[3] Bibak, K., Kapron, B. M., Srinivasan, V.: Unweighted linear congruences with distinct coordinates and the Varshamov-Tenengolts codes. Des. Codes Cryptography 86 (2018), 1893-1904. | DOI | MR | JFM
[4] Bibak, K., Kapron, B. M., Srinivasan, V.: A generalization of Schönemann's theorem via a graph theoretic method. Discrete Math. 342 (2019), 3057-3061. | DOI | MR | JFM
[5] Bibak, K., Kapron, B. M., Srinivasan, V., Tauraso, R., Tóth, L.: Restricted linear congruences. J. Number Theory 171 (2017), 128-144. | DOI | MR | JFM
[6] Bibak, K., Kapron, B. M., Srinivasan, V., Tóth, L.: On an almost-universal hash function family with applications to authentication and secrecy codes. Int. J. Found. Comput. Sci. 29 (2018), 357-375. | DOI | MR | JFM
[7] Bibak, K., Milenkovic, O.: Explicit formulas for the weight enumerators of some classes of deletion correcting codes. IEEE Trans. Commun. 67 (2019), 1809-1816. | DOI
[8] Brauer, A.: Lösung der Aufgabe 30. Jahresber. Dtsch. Math.-Ver. 35 (1926), 92-94 German \99999JFM99999 52.0139.03.
[9] Calderón, C., Grau, J. M., Oller-Marcén, A. M., Tóth, L.: Counting invertible sums of squares modulo $n$ and a new generalization of Euler's totient function. Publ. Math. Debr. 87 (2015), 133-145. | DOI | MR | JFM
[10] Cheng, Q., Murray, E.: On deciding deep holes of Reed-Solomon codes. Theory and Applications of Models of Computation Lecture Notes in Computer Science 4484. Springer, Berlin (2007), 296-305. | DOI | MR | JFM
[11] Cohen, E.: A class of arithmetical functions. Proc. Natl. Acad. Sci. USA 41 (1955), 939-944. | DOI | MR | JFM
[12] Dickson, L. E.: History of the Theory of Numbers. II. Diophantine Analysis. Chelsea Publishing, New York (1966). | MR | JFM
[13] Grau, J. M., Oller-Marcén, A. M.: Fast computation of the number of solutions to $x_1^2 + \cdots +x_k^2 \equiv \lambda \pmod n$. J. Number Theory 200 (2019), 427-440. | DOI | MR | JFM
[14] Grynkiewicz, D. J., Philipp, A., Ponomarenko, V.: Arithmetic-progression-weighted subsequence sums. Isr. J. Math. 193 (2013), 359-398. | DOI | MR | JFM
[15] Gupta, H.: Partitions - a survey. J. Res. Natl. Bur. Stand., Sect. B 74 (1970), 1-29. | DOI | MR | JFM
[16] Hull, R.: The numbers of solutions of congruences involving only $k$th powers. Trans. Am. Math. Soc. 34 (1932), 908-937. | DOI | MR | JFM
[17] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84. Springer, New York (1990). | DOI | MR | JFM
[18] Jacobson, D., Williams, K. S.: On the number of distinguished representations of a group element. Duke Math. J. 39 (1972), 521-527. | DOI | MR | JFM
[19] Lehmer, D. N.: Certain theorems in the theory of quadratic residues. Am. Math. Mon. 20 (1913), 148-157 \99999JFM99999 44.0248.09. | DOI | MR
[20] Li, J., Wan, D.: On the subset sum problem over finite fields. Finite Fields Appl. 14 (2008), 911-929. | DOI | MR | JFM
[21] Li, J., Wan, D.: Counting subset sums of finite Abelian groups. J. Comb. Theory, Ser. A 119 (2012), 170-182. | DOI | MR | JFM
[22] Li, S., Ouyang, Y.: Counting the solutions of $\lambda_1 x^{k_1}_1 + \dots + \lambda_t x_t^{k_t} \equiv c$ mod $n$. J. Number Theory 187 (2018), 41-65. | DOI | MR | JFM
[23] Montgomery, H. L., Vaughan, R. C.: Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). | DOI | MR | JFM
[24] Nicol, C. A., Vandiver, H. S.: A von Sterneck arithmetical function and restricted partitions with respect to a modulus. Proc. Natl. Acad. Sci. USA 40 (1954), 825-835. | DOI | MR | JFM
[25] Rademacher, H.: Über den Vektorenbereich eines konvexen ebenen Bereiches. Jahresber. Dtsch. Math.-Ver. 34 (1925), 64-79 German \99999JFM99999 51.0592.01.
[26] Ramanathan, K. G.: Some applications of Ramanujan's trigonometrical sum $C_m(n)$. Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69. | DOI | MR | JFM
[27] Riordan, J.: Enumerations for permutations in difference form. Proc. Am. Math. Soc. 13 (1962), 107-110. | DOI | MR | JFM
[28] Schönemann, T.: Theorie der symmetrischen Functionen der Wurzeln einer Gleichung: Allgemeine Sätze über Congruenzen nebst einigen Anwendungen derselben. J. Reine Angew. Math. 19 (1839), 231-243 German. | DOI | MR | JFM
[29] Stangl, W. D.: Counting squares in $\Bbb{Z}_n$. Math. Mag. 69 (1996), 285-289. | DOI | MR | JFM
[30] Tóth, L.: Counting solutions of quadratic congruences in several variables revisited. J. Integer Seq. 17 (2014), Article ID 14.11.6, 23 pages. | MR | JFM
Cité par Sources :