Keywords: fractional integral operator; quasi-metric measure space; Hausdorff content; weak Choquet space; Ahlfors regular
@article{10_21136_CMJ_2024_0133_24,
author = {Futamura, Toshihide and Shimomura, Tetsu},
title = {Generalized fractional integral operators on weak {Choquet} spaces over quasi-metric measure spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {905--913},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0133-24},
mrnumber = {4804967},
zbl = {07953685},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0133-24/}
}
TY - JOUR AU - Futamura, Toshihide AU - Shimomura, Tetsu TI - Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces JO - Czechoslovak Mathematical Journal PY - 2024 SP - 905 EP - 913 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0133-24/ DO - 10.21136/CMJ.2024.0133-24 LA - en ID - 10_21136_CMJ_2024_0133_24 ER -
%0 Journal Article %A Futamura, Toshihide %A Shimomura, Tetsu %T Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces %J Czechoslovak Mathematical Journal %D 2024 %P 905-913 %V 74 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0133-24/ %R 10.21136/CMJ.2024.0133-24 %G en %F 10_21136_CMJ_2024_0133_24
Futamura, Toshihide; Shimomura, Tetsu. Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 905-913. doi: 10.21136/CMJ.2024.0133-24
[1] Adams, D. R.: A note on Choquet integrals with respect to Hausdorff capacity. Function Spaces and Applications Lecture Notes in Mathematics 1302. Springer, Berlin (1988), 115-124. | DOI | MR | JFM
[2] Adams, D. R.: Choquet integrals in potential theory. Publ. Mat., Barc. 42 (1998), 3-66. | DOI | MR | JFM
[3] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17. EMS Press, Zürich (2011). | DOI | MR | JFM
[4] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), 101 pages. | DOI | MR | JFM
[5] Hatano, N., Kawasumi, R., Saito, H., Tanaka, H.: Choquet integrals, Hausdorff content and fractional operators. (to appear) in Bull. Aust. Math. Soc. | DOI | MR
[6] Hedberg, L. I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36 (1972), 505-510. | DOI | MR | JFM
[7] Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001). | DOI | MR | JFM
[8] Kairema, A.: Two-weight norm inequalities for potential type and maximal operators in a metric space. Publ. Mat., Barc. 57 (2013), 3-56. | DOI | MR | JFM
[9] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), 255-271. | MR | JFM
[10] Orobitg, J., Verdera, J.: Choquet integrals, Hausdorff content and the Hardy-Littlewood maximal operator. Bull. Lond. Math. Soc. 30 (1998), 145-150. | DOI | MR | JFM
[11] Sawano, Y., Shimomura, T.: Fractional maximal operator on Musielak-Orlicz spaces over unbounded quasi-metric measure spaces. Result. Math. 76 (2021), Article ID 188, 22 pages. | DOI | MR | JFM
[12] Watanabe, H.: Estimates of fractional maximal functions in a quasi-metric space. Nat. Sci. Rep. Ochanomizu Univ. 56 (2006), 21-31. | MR | JFM
[13] Watanabe, H.: Estimates of maximal functions by Hausdorff contents in a metric space. Potential Theory in Matsue Advanced Studies in Pure Mathematics 44. Mathematical Society of Japan, Tokyo (2006), 377-389. | DOI | MR | JFM
Cité par Sources :