Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 905-913
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove the boundedness of the generalized fractional maximal operator $M_{\alpha }$ and the generalized fractional integral operator $I_{\alpha }$ on weak Choquet spaces with respect to Hausdorff content over quasi-metric measure spaces.
We prove the boundedness of the generalized fractional maximal operator $M_{\alpha }$ and the generalized fractional integral operator $I_{\alpha }$ on weak Choquet spaces with respect to Hausdorff content over quasi-metric measure spaces.
DOI : 10.21136/CMJ.2024.0133-24
Classification : 28A12, 42B25, 46E30
Keywords: fractional integral operator; quasi-metric measure space; Hausdorff content; weak Choquet space; Ahlfors regular
@article{10_21136_CMJ_2024_0133_24,
     author = {Futamura, Toshihide and Shimomura, Tetsu},
     title = {Generalized fractional integral operators on weak {Choquet} spaces over quasi-metric measure spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {905--913},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0133-24},
     mrnumber = {4804967},
     zbl = {07953685},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0133-24/}
}
TY  - JOUR
AU  - Futamura, Toshihide
AU  - Shimomura, Tetsu
TI  - Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 905
EP  - 913
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0133-24/
DO  - 10.21136/CMJ.2024.0133-24
LA  - en
ID  - 10_21136_CMJ_2024_0133_24
ER  - 
%0 Journal Article
%A Futamura, Toshihide
%A Shimomura, Tetsu
%T Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces
%J Czechoslovak Mathematical Journal
%D 2024
%P 905-913
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0133-24/
%R 10.21136/CMJ.2024.0133-24
%G en
%F 10_21136_CMJ_2024_0133_24
Futamura, Toshihide; Shimomura, Tetsu. Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 905-913. doi: 10.21136/CMJ.2024.0133-24

[1] Adams, D. R.: A note on Choquet integrals with respect to Hausdorff capacity. Function Spaces and Applications Lecture Notes in Mathematics 1302. Springer, Berlin (1988), 115-124. | DOI | MR | JFM

[2] Adams, D. R.: Choquet integrals in potential theory. Publ. Mat., Barc. 42 (1998), 3-66. | DOI | MR | JFM

[3] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17. EMS Press, Zürich (2011). | DOI | MR | JFM

[4] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), 101 pages. | DOI | MR | JFM

[5] Hatano, N., Kawasumi, R., Saito, H., Tanaka, H.: Choquet integrals, Hausdorff content and fractional operators. (to appear) in Bull. Aust. Math. Soc. | DOI | MR

[6] Hedberg, L. I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36 (1972), 505-510. | DOI | MR | JFM

[7] Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001). | DOI | MR | JFM

[8] Kairema, A.: Two-weight norm inequalities for potential type and maximal operators in a metric space. Publ. Mat., Barc. 57 (2013), 3-56. | DOI | MR | JFM

[9] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), 255-271. | MR | JFM

[10] Orobitg, J., Verdera, J.: Choquet integrals, Hausdorff content and the Hardy-Littlewood maximal operator. Bull. Lond. Math. Soc. 30 (1998), 145-150. | DOI | MR | JFM

[11] Sawano, Y., Shimomura, T.: Fractional maximal operator on Musielak-Orlicz spaces over unbounded quasi-metric measure spaces. Result. Math. 76 (2021), Article ID 188, 22 pages. | DOI | MR | JFM

[12] Watanabe, H.: Estimates of fractional maximal functions in a quasi-metric space. Nat. Sci. Rep. Ochanomizu Univ. 56 (2006), 21-31. | MR | JFM

[13] Watanabe, H.: Estimates of maximal functions by Hausdorff contents in a metric space. Potential Theory in Matsue Advanced Studies in Pure Mathematics 44. Mathematical Society of Japan, Tokyo (2006), 377-389. | DOI | MR | JFM

Cité par Sources :