A remark on a Diophantine equation of S. S. Pillai
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 897-903
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
S. S. Pillai proved that for a fixed positive integer $a$, the exponential Diophantine equation $x^y-y^x= a$, $\min (x,y)>1$, has only finitely many solutions in integers $x$ and $y$. We prove that when $a$ is of the form $2z^2$, the above equation has no solution in integers $x$ and $y$ with $\gcd (x,y)=1$.
S. S. Pillai proved that for a fixed positive integer $a$, the exponential Diophantine equation $x^y-y^x= a$, $\min (x,y)>1$, has only finitely many solutions in integers $x$ and $y$. We prove that when $a$ is of the form $2z^2$, the above equation has no solution in integers $x$ and $y$ with $\gcd (x,y)=1$.
DOI :
10.21136/CMJ.2024.0124-24
Classification :
11D61, 11D72
Keywords: Pillai's Diophantine equation; Lehmer sequence; primitive divisor
Keywords: Pillai's Diophantine equation; Lehmer sequence; primitive divisor
@article{10_21136_CMJ_2024_0124_24,
author = {Hoque, Azizul},
title = {A remark on a {Diophantine} equation of {S.} {S.} {Pillai}},
journal = {Czechoslovak Mathematical Journal},
pages = {897--903},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0124-24},
mrnumber = {4804966},
zbl = {07953684},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0124-24/}
}
TY - JOUR AU - Hoque, Azizul TI - A remark on a Diophantine equation of S. S. Pillai JO - Czechoslovak Mathematical Journal PY - 2024 SP - 897 EP - 903 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0124-24/ DO - 10.21136/CMJ.2024.0124-24 LA - en ID - 10_21136_CMJ_2024_0124_24 ER -
Hoque, Azizul. A remark on a Diophantine equation of S. S. Pillai. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 897-903. doi: 10.21136/CMJ.2024.0124-24
Cité par Sources :