A remark on a Diophantine equation of S. S. Pillai
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 897-903
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

S. S. Pillai proved that for a fixed positive integer $a$, the exponential Diophantine equation $x^y-y^x= a$, $\min (x,y)>1$, has only finitely many solutions in integers $x$ and $y$. We prove that when $a$ is of the form $2z^2$, the above equation has no solution in integers $x$ and $y$ with $\gcd (x,y)=1$.
S. S. Pillai proved that for a fixed positive integer $a$, the exponential Diophantine equation $x^y-y^x= a$, $\min (x,y)>1$, has only finitely many solutions in integers $x$ and $y$. We prove that when $a$ is of the form $2z^2$, the above equation has no solution in integers $x$ and $y$ with $\gcd (x,y)=1$.
DOI : 10.21136/CMJ.2024.0124-24
Classification : 11D61, 11D72
Keywords: Pillai's Diophantine equation; Lehmer sequence; primitive divisor
@article{10_21136_CMJ_2024_0124_24,
     author = {Hoque, Azizul},
     title = {A remark on a {Diophantine} equation of {S.} {S.} {Pillai}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {897--903},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0124-24},
     mrnumber = {4804966},
     zbl = {07953684},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0124-24/}
}
TY  - JOUR
AU  - Hoque, Azizul
TI  - A remark on a Diophantine equation of S. S. Pillai
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 897
EP  - 903
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0124-24/
DO  - 10.21136/CMJ.2024.0124-24
LA  - en
ID  - 10_21136_CMJ_2024_0124_24
ER  - 
%0 Journal Article
%A Hoque, Azizul
%T A remark on a Diophantine equation of S. S. Pillai
%J Czechoslovak Mathematical Journal
%D 2024
%P 897-903
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0124-24/
%R 10.21136/CMJ.2024.0124-24
%G en
%F 10_21136_CMJ_2024_0124_24
Hoque, Azizul. A remark on a Diophantine equation of S. S. Pillai. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 897-903. doi: 10.21136/CMJ.2024.0124-24

[1] Bilu, Y., Hanrot, G., Voutier, P. M.: Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), 75-122. | DOI | MR | JFM

[2] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | JFM

[3] Cohen, H.: A Course in Computational Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). | DOI | MR | JFM

[4] Cohn, J. H. E.: Square Fibonacci numbers, etc. Fibonacci Q. 2 (1964), 109-113. | MR | JFM

[5] Hoque, A.: On a class of Lebesgue-Ramanujan-Nagell equations. Period. Math. Hung. 88 (2024), 418-428. | DOI | MR | JFM

[6] Hua, L. K.: Introduction to Number Theory. Springer, Berlin (1982). | DOI | MR | JFM

[7] Le, M.: On the Diophantine equation $y^x-x^y=z^2$. Rocky Mt. J. Math. 37 (2007), 1181-1185. | DOI | MR | JFM

[8] Luca, F., Mignotte, M.: On the equation $y^x \pm x^y = z^2$. Rocky Mt. J. Math. 30 (2000), 651-661. | DOI | MR | JFM

[9] Pillai, S. S.: On the indeterminate equation $x^y-y^x = a$. Annamalai Univ. J. 1 (1932), 59-61. | JFM

[10] Robbins, N.: Fibonacci numbers of the form $cx^2$, where $1 \leq c \leq 1000$. Fibonacci Q. 28 (1990), 306-315. | MR | JFM

[11] Voutier, P. M.: Primitive divisors of Lucas and Lehmer sequences. Math. Comput. 64 (1995), 869-888. | DOI | MR | JFM

[12] Waldschmidt, M.: Perfect powers: Pillai's works and their developments. Collected works of S. Sivasankaranarayana Pillai. Volume 1 Ramanujan Mathematical Society, Mysore (2010), xxii--xlvii. | MR

[13] Yuan, P.: On the Diophantine equation $ax^2 + by^2 = ck^n$. Indag. Math., New Ser. 16 (2005), 301-320. | DOI | MR | JFM

Cité par Sources :