Keywords: Pillai's Diophantine equation; Lehmer sequence; primitive divisor
@article{10_21136_CMJ_2024_0124_24,
author = {Hoque, Azizul},
title = {A remark on a {Diophantine} equation of {S.} {S.} {Pillai}},
journal = {Czechoslovak Mathematical Journal},
pages = {897--903},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0124-24},
mrnumber = {4804966},
zbl = {07953684},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0124-24/}
}
TY - JOUR AU - Hoque, Azizul TI - A remark on a Diophantine equation of S. S. Pillai JO - Czechoslovak Mathematical Journal PY - 2024 SP - 897 EP - 903 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0124-24/ DO - 10.21136/CMJ.2024.0124-24 LA - en ID - 10_21136_CMJ_2024_0124_24 ER -
Hoque, Azizul. A remark on a Diophantine equation of S. S. Pillai. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 897-903. doi: 10.21136/CMJ.2024.0124-24
[1] Bilu, Y., Hanrot, G., Voutier, P. M.: Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), 75-122. | DOI | MR | JFM
[2] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | JFM
[3] Cohen, H.: A Course in Computational Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). | DOI | MR | JFM
[4] Cohn, J. H. E.: Square Fibonacci numbers, etc. Fibonacci Q. 2 (1964), 109-113. | MR | JFM
[5] Hoque, A.: On a class of Lebesgue-Ramanujan-Nagell equations. Period. Math. Hung. 88 (2024), 418-428. | DOI | MR | JFM
[6] Hua, L. K.: Introduction to Number Theory. Springer, Berlin (1982). | DOI | MR | JFM
[7] Le, M.: On the Diophantine equation $y^x-x^y=z^2$. Rocky Mt. J. Math. 37 (2007), 1181-1185. | DOI | MR | JFM
[8] Luca, F., Mignotte, M.: On the equation $y^x \pm x^y = z^2$. Rocky Mt. J. Math. 30 (2000), 651-661. | DOI | MR | JFM
[9] Pillai, S. S.: On the indeterminate equation $x^y-y^x = a$. Annamalai Univ. J. 1 (1932), 59-61. | JFM
[10] Robbins, N.: Fibonacci numbers of the form $cx^2$, where $1 \leq c \leq 1000$. Fibonacci Q. 28 (1990), 306-315. | MR | JFM
[11] Voutier, P. M.: Primitive divisors of Lucas and Lehmer sequences. Math. Comput. 64 (1995), 869-888. | DOI | MR | JFM
[12] Waldschmidt, M.: Perfect powers: Pillai's works and their developments. Collected works of S. Sivasankaranarayana Pillai. Volume 1 Ramanujan Mathematical Society, Mysore (2010), xxii--xlvii. | MR
[13] Yuan, P.: On the Diophantine equation $ax^2 + by^2 = ck^n$. Indag. Math., New Ser. 16 (2005), 301-320. | DOI | MR | JFM
Cité par Sources :