Keywords: maximal non-pseudovaluation domain; pseudovaluation subring
@article{10_21136_CMJ_2024_0122_23,
author = {Kumar, Rahul},
title = {Maximal non-pseudovaluation subrings of an integral domain},
journal = {Czechoslovak Mathematical Journal},
pages = {389--395},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0122-23},
mrnumber = {4764529},
zbl = {07893388},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0122-23/}
}
TY - JOUR AU - Kumar, Rahul TI - Maximal non-pseudovaluation subrings of an integral domain JO - Czechoslovak Mathematical Journal PY - 2024 SP - 389 EP - 395 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0122-23/ DO - 10.21136/CMJ.2024.0122-23 LA - en ID - 10_21136_CMJ_2024_0122_23 ER -
Kumar, Rahul. Maximal non-pseudovaluation subrings of an integral domain. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 389-395. doi: 10.21136/CMJ.2024.0122-23
[1] Ayache, A., Echi, O.: Valuation and pseudovaluation subrings of an integral domain. Commun. Algebra 34 (2006), 2467-2483. | DOI | MR | JFM
[2] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. | DOI | MR | JFM
[3] Cahen, P.-J.: Couple d'anneaux partageant un idéal. Arch. Math. 51 (1988), 505-514 French. | DOI | MR | JFM
[4] Davis, E. D.: Overrings of commutative rings. III. Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. | DOI | MR | JFM
[5] Dechene, L. I.: Adjacent Extensions of Rings: Ph.D. Dissertation. University of California, Riverside (1978). | MR
[6] Dobbs, D. E., Fontana, M.: Universally incomparable ring homomorphisms. Bull. Aust. Math. Soc. 29 (1984), 289-302. | DOI | MR | JFM
[7] Ferrand, D., Olivier, J.-P.: Homomorphismes minimaux d'anneaux. J. Algebra 16 (1970), 461-471 French. | DOI | MR | JFM
[8] Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains. Pac. J. Math. 75 (1978), 137-147. | DOI | MR | JFM
[9] Jarboui, N., Trabelsi, S.: Some results about proper overrings of pseudo-valuation domains. J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. | DOI | MR | JFM
[10] Kumar, R., Gaur, A.: Maximal non valuation domains in an integral domain. Czech. Math. J. 70 (2020), 1019-1032. | DOI | MR | JFM
[11] Modica, M. L.: Maximal Subrings: Ph.D. Dissertation. University of Chicago, Chicago (1975). | MR
Cité par Sources :