Maximal non-pseudovaluation subrings of an integral domain
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 389-395
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let $R\subset S$ be an extension of domains. Then $R$ is called a maximal non-pseudovaluation subring of $S$ if $R$ is not a pseudovaluation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a pseudovaluation subring of $S$. We show that if $S$ is not local, then there no such $T$ exists between $R$ and $S$. We also characterize maximal non-pseudovaluation subrings of a local integral domain.
The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let $R\subset S$ be an extension of domains. Then $R$ is called a maximal non-pseudovaluation subring of $S$ if $R$ is not a pseudovaluation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a pseudovaluation subring of $S$. We show that if $S$ is not local, then there no such $T$ exists between $R$ and $S$. We also characterize maximal non-pseudovaluation subrings of a local integral domain.
DOI :
10.21136/CMJ.2024.0122-23
Classification :
13B02, 13B22, 13G05
Keywords: maximal non-pseudovaluation domain; pseudovaluation subring
Keywords: maximal non-pseudovaluation domain; pseudovaluation subring
@article{10_21136_CMJ_2024_0122_23,
author = {Kumar, Rahul},
title = {Maximal non-pseudovaluation subrings of an integral domain},
journal = {Czechoslovak Mathematical Journal},
pages = {389--395},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0122-23},
mrnumber = {4764529},
zbl = {07893388},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0122-23/}
}
TY - JOUR AU - Kumar, Rahul TI - Maximal non-pseudovaluation subrings of an integral domain JO - Czechoslovak Mathematical Journal PY - 2024 SP - 389 EP - 395 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0122-23/ DO - 10.21136/CMJ.2024.0122-23 LA - en ID - 10_21136_CMJ_2024_0122_23 ER -
Kumar, Rahul. Maximal non-pseudovaluation subrings of an integral domain. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 389-395. doi: 10.21136/CMJ.2024.0122-23
Cité par Sources :