Keywords: local boundedness; minimizer; variational integral; anisotropic growth; convex; polyconvex
@article{10_21136_CMJ_2024_0121_24,
author = {Feng, Zesheng and Zhang, Aiping and Gao, Hongya},
title = {Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions},
journal = {Czechoslovak Mathematical Journal},
pages = {1165--1184},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0121-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0121-24/}
}
TY - JOUR AU - Feng, Zesheng AU - Zhang, Aiping AU - Gao, Hongya TI - Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1165 EP - 1184 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0121-24/ DO - 10.21136/CMJ.2024.0121-24 LA - en ID - 10_21136_CMJ_2024_0121_24 ER -
%0 Journal Article %A Feng, Zesheng %A Zhang, Aiping %A Gao, Hongya %T Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions %J Czechoslovak Mathematical Journal %D 2024 %P 1165-1184 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0121-24/ %R 10.21136/CMJ.2024.0121-24 %G en %F 10_21136_CMJ_2024_0121_24
Feng, Zesheng; Zhang, Aiping; Gao, Hongya. Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1165-1184. doi: 10.21136/CMJ.2024.0121-24
[1] Acerbi, E., Fusco, N.: Partial regularity under anisotropic $(p,q)$ growth conditions. J. Differ. Equations 107 (1994), 46-67. | DOI | MR | JFM
[2] Cupini, G., Focardi, M., Leonetti, F., Mascolo, E.: On the Hölder continuity for a class of vectorial problems. Adv. Nonlinear Anal. 9 (2020), 1008-1025. | DOI | MR | JFM
[3] Cupini, G., Leonetti, F., Mascolo, E.: Local boundedness for minimizers of some polyconvex integrals. Arch. Ration. Mech. Anal. 224 (2017), 269-289. | DOI | MR | JFM
[4] Cupini, G., Marcellini, P., Mascolo, E.: Regularity under sharp anisotropic general growth conditions. Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 67-86. | DOI | MR | JFM
[5] Cupini, G., Marcellini, P., Mascolo, E.: Local boundedness of minimizers with limit growth conditions. J. Optim. Theory Appl. 166 (2015), 1-22. | DOI | MR | JFM
[6] Cupini, G., Marcellini, P., Mascolo, E.: Regularity of minimizers under limit growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 153 (2017), 294-310. | DOI | MR | JFM
[7] Fusco, N., Sbordone, C.: Local boundedness of minimizers in a limit case. Manuscr. Math. 69 (1990), 19-25. | DOI | MR | JFM
[8] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). | DOI | MR | JFM
[9] Granucci, T., Randolfi, M.: Regularity for local minima of a special class of vectorial problems with fully anisotropic growth. Manuscr. Math. 170 (2023), 677-772. | DOI | MR | JFM
[10] Han, Y., Fang, M., Xia, L., Gao, H.: Two generalizations of Stampacchia lemma and applications. Available at , 26 pages. | arXiv | DOI
[11] Leonetti, F., Petricca, P. V.: Regularity for minimizers of integrals with nonstandard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 258-264. | DOI | MR | JFM
[12] Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267-284. | DOI | MR | JFM
[13] Marcellini, P.: Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions. J. Differ. Equations 90 (1991), 1-30. | DOI | MR | JFM
[14] Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18 (1969), 3-24 Italian. | MR | JFM
Cité par Sources :