Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1165-1184
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi's iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function $g$, and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.
This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi's iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function $g$, and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.
DOI : 10.21136/CMJ.2024.0121-24
Classification : 35J20
Keywords: local boundedness; minimizer; variational integral; anisotropic growth; convex; polyconvex
@article{10_21136_CMJ_2024_0121_24,
     author = {Feng, Zesheng and Zhang, Aiping and Gao, Hongya},
     title = {Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1165--1184},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0121-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0121-24/}
}
TY  - JOUR
AU  - Feng, Zesheng
AU  - Zhang, Aiping
AU  - Gao, Hongya
TI  - Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1165
EP  - 1184
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0121-24/
DO  - 10.21136/CMJ.2024.0121-24
LA  - en
ID  - 10_21136_CMJ_2024_0121_24
ER  - 
%0 Journal Article
%A Feng, Zesheng
%A Zhang, Aiping
%A Gao, Hongya
%T Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions
%J Czechoslovak Mathematical Journal
%D 2024
%P 1165-1184
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0121-24/
%R 10.21136/CMJ.2024.0121-24
%G en
%F 10_21136_CMJ_2024_0121_24
Feng, Zesheng; Zhang, Aiping; Gao, Hongya. Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1165-1184. doi: 10.21136/CMJ.2024.0121-24

[1] Acerbi, E., Fusco, N.: Partial regularity under anisotropic $(p,q)$ growth conditions. J. Differ. Equations 107 (1994), 46-67. | DOI | MR | JFM

[2] Cupini, G., Focardi, M., Leonetti, F., Mascolo, E.: On the Hölder continuity for a class of vectorial problems. Adv. Nonlinear Anal. 9 (2020), 1008-1025. | DOI | MR | JFM

[3] Cupini, G., Leonetti, F., Mascolo, E.: Local boundedness for minimizers of some polyconvex integrals. Arch. Ration. Mech. Anal. 224 (2017), 269-289. | DOI | MR | JFM

[4] Cupini, G., Marcellini, P., Mascolo, E.: Regularity under sharp anisotropic general growth conditions. Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 67-86. | DOI | MR | JFM

[5] Cupini, G., Marcellini, P., Mascolo, E.: Local boundedness of minimizers with limit growth conditions. J. Optim. Theory Appl. 166 (2015), 1-22. | DOI | MR | JFM

[6] Cupini, G., Marcellini, P., Mascolo, E.: Regularity of minimizers under limit growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 153 (2017), 294-310. | DOI | MR | JFM

[7] Fusco, N., Sbordone, C.: Local boundedness of minimizers in a limit case. Manuscr. Math. 69 (1990), 19-25. | DOI | MR | JFM

[8] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). | DOI | MR | JFM

[9] Granucci, T., Randolfi, M.: Regularity for local minima of a special class of vectorial problems with fully anisotropic growth. Manuscr. Math. 170 (2023), 677-772. | DOI | MR | JFM

[10] Han, Y., Fang, M., Xia, L., Gao, H.: Two generalizations of Stampacchia lemma and applications. Available at , 26 pages. | arXiv | DOI

[11] Leonetti, F., Petricca, P. V.: Regularity for minimizers of integrals with nonstandard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 258-264. | DOI | MR | JFM

[12] Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267-284. | DOI | MR | JFM

[13] Marcellini, P.: Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions. J. Differ. Equations 90 (1991), 1-30. | DOI | MR | JFM

[14] Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18 (1969), 3-24 Italian. | MR | JFM

Cité par Sources :