Keywords: $DCC_{d}$; amalgamation of ring; trivial ring extension; Noetherian ring; Artinian ring; polynomial ring extension
@article{10_21136_CMJ_2024_0112_23,
author = {Es Safi, Oussama Aymane and Mahdou, Najib and Tekir, \"Unsal},
title = {Rings with divisibility on descending chains of ideals},
journal = {Czechoslovak Mathematical Journal},
pages = {665--673},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0112-23},
mrnumber = {4804952},
zbl = {07953670},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0112-23/}
}
TY - JOUR AU - Es Safi, Oussama Aymane AU - Mahdou, Najib AU - Tekir, Ünsal TI - Rings with divisibility on descending chains of ideals JO - Czechoslovak Mathematical Journal PY - 2024 SP - 665 EP - 673 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0112-23/ DO - 10.21136/CMJ.2024.0112-23 LA - en ID - 10_21136_CMJ_2024_0112_23 ER -
%0 Journal Article %A Es Safi, Oussama Aymane %A Mahdou, Najib %A Tekir, Ünsal %T Rings with divisibility on descending chains of ideals %J Czechoslovak Mathematical Journal %D 2024 %P 665-673 %V 74 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0112-23/ %R 10.21136/CMJ.2024.0112-23 %G en %F 10_21136_CMJ_2024_0112_23
Es Safi, Oussama Aymane; Mahdou, Najib; Tekir, Ünsal. Rings with divisibility on descending chains of ideals. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 665-673. doi: 10.21136/CMJ.2024.0112-23
[1] Anderson, D. D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. | DOI | MR | JFM
[2] Bakkari, C.: Rings in which every homomorphic image is a Noetherian domain. Gulf J. Math. 2 (2014), 1-6. | DOI | JFM
[3] D'Anna, M.: A construction of Gorenstein rings. J. Algebra 306 (2006), 507-519. | DOI | MR | JFM
[4] D'Anna, M., Finacchiaro, C. A., Fontana, M.: Amalgamated algebra along an ideal. Commutative algebra and its applications Walter de Gruyter, Berlin (2009), 155-172. | DOI | MR | JFM
[5] D'Anna, M., Finacchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. | DOI | MR | JFM
[6] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along a multiplicative-canonical ideal. Ark. Mat. 45 (2007), 241-252. | DOI | MR | JFM
[7] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties. J. Algebra Appl. 6 (2007), 443-459. | DOI | MR | JFM
[8] Dastanpour, R., Ghorbani, A.: Rings with divisibility on chains of ideals. Commun. Algebra 45 (2017), 2889-2898. | DOI | MR | JFM
[9] Glaz, S.: Commutative Coherent Rings. Lecture Notes in Mathematics 1371. Springer, Berlin (1989). | DOI | MR | JFM
[10] Kabbaj, S.-E., Mahdou, N.: Trivial extensions defined by coherent-like conditions. Commun. Algebra 32 (2004), 3937-3953. | DOI | MR | JFM
[11] Mohammadi, R., Moussavi, A., Zahiri, M.: A note on minimal prime ideals. Bull. Korean Math. Soc. 54 (2017), 1281-1291. | DOI | MR | JFM
[12] Nagata, M.: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13. John Wiley & Sons, New York (1962). | MR | JFM
Cité par Sources :