Hall algebra of morphism category
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1145-1164
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra $\mathcal {H}(C_2(\mathcal {P}))$, where $C_2(\mathcal {P})$ is the category of morphisms between projective objects in a finitary hereditary exact category $\mathcal A$. When $\mathcal A$ is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra $\mathcal {L}$, which is spanned by isoclasses of indecomposable objects in $C_2(\mathcal {P})$. As applications, we demonstrate that $\mathcal {L}$ contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with $\mathcal A$ as a Lie subquotient algebra of $\mathcal {L}$.
This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra $\mathcal {H}(C_2(\mathcal {P}))$, where $C_2(\mathcal {P})$ is the category of morphisms between projective objects in a finitary hereditary exact category $\mathcal A$. When $\mathcal A$ is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra $\mathcal {L}$, which is spanned by isoclasses of indecomposable objects in $C_2(\mathcal {P})$. As applications, we demonstrate that $\mathcal {L}$ contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with $\mathcal A$ as a Lie subquotient algebra of $\mathcal {L}$.
DOI : 10.21136/CMJ.2024.0103-24
Classification : 16G20, 17B20, 17B30, 18G05
Keywords: Hall algebra; morphism category; Heisenberg Lie algebra; simple Lie algebra
@article{10_21136_CMJ_2024_0103_24,
     author = {Chen, QingHua and Zhang, Liwang},
     title = {Hall algebra of morphism category},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1145--1164},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0103-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0103-24/}
}
TY  - JOUR
AU  - Chen, QingHua
AU  - Zhang, Liwang
TI  - Hall algebra of morphism category
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1145
EP  - 1164
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0103-24/
DO  - 10.21136/CMJ.2024.0103-24
LA  - en
ID  - 10_21136_CMJ_2024_0103_24
ER  - 
%0 Journal Article
%A Chen, QingHua
%A Zhang, Liwang
%T Hall algebra of morphism category
%J Czechoslovak Mathematical Journal
%D 2024
%P 1145-1164
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0103-24/
%R 10.21136/CMJ.2024.0103-24
%G en
%F 10_21136_CMJ_2024_0103_24
Chen, QingHua; Zhang, Liwang. Hall algebra of morphism category. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1145-1164. doi: 10.21136/CMJ.2024.0103-24

[1] Auslander, M., Reiten, I.: On the representation type of triangular matrix rings. J. Lond. Math. Soc., II. Ser. 12 (1976), 371-382. | DOI | MR | JFM

[2] Bautista, R.: The category of morphisms between projective modules. Commun. Algebra 32 (2004), 4303-4331. | DOI | MR | JFM

[3] Berenstein, A., Greenstein, J.: Primitively generated Hall algebras. Pac. J. Math. 281 (2016), 287-331. | DOI | MR | JFM

[4] Birkhoff, G.: Subgroups of Abelian groups. Proc. Lond. Math. Soc. (1935), 385-401. | DOI | MR | JFM

[5] Bridgeland, T.: Quantum groups via Hall algebras of complexes. Ann. Math. (2) 177 (2013), 739-759. | DOI | MR | JFM

[6] Irelli, G. Cerulli, Feigin, E., Reineke, M.: Quiver Grassmannians and degenerate flag varieties. Algebra Number Theory 6 (2012), 165-194. | DOI | MR | JFM

[7] Chen, Q., Deng, B.: Cyclic complexes, Hall polynomials and simple Lie algebras. J. Algebra 440 (2015), 1-32. | DOI | MR | JFM

[8] Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs 150. AMS, Providence (2008). | DOI | MR | JFM

[9] Ding, M., Xu, F., Zhang, H.: Acyclic quantum cluster algebras via Hall algebras of morphisms. Math. Z. 296 (2020), 945-968. | DOI | MR | JFM

[10] Eiríksson, "O.: From submodule categories to the stable Auslander algebra. J. Algebra 486 (2017), 98-118. | DOI | MR | JFM

[11] Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6 (1972), 71-103 German. | DOI | MR | JFM

[12] Gabriel, P.: Indecomposable representations. II. Symposia Mathematica, Vol. XI Academic Press, London (1973), 81-104. | MR | JFM

[13] Guo, J. Y., Peng, L.: Universal PBW-basis of Hall-Ringel algebras and Hall polynomials. J. Algebra 198 (1997), 339-351. | DOI | MR | JFM

[14] Hafezi, R., Eshraghi, H.: Determination of some almost split sequences in morphism categories. J. Algebra 633 (2023), 88-113. | DOI | MR | JFM

[15] Hubery, A.: From triangulated categories to Lie algebras: A theorem of Peng and Xiao. Trends in Representation Theory of Algebras and Related Topics Contemporary Mathematics 406. AMS, Providence (2006), 51-66. | DOI | MR | JFM

[16] Kussin, D., Lenzing, H., Meltzer, H.: Nilpotent operators and weighted projective lines. J. Reine. Angew. Math. 685 (2013), 33-71. | DOI | MR | JFM

[17] Lin, Z.: Abelian quotients arising from extriangulated categories via morphism categories. Algebr. Represent. Theory 26 (2023), 117-136. | DOI | MR | JFM

[18] Luo, X.-H., Zhang, P.: Separated monic representations. I: Gorenstein-projective modules. J. Algebra 479 (2017), 1-34. | DOI | MR | JFM

[19] Peng, L.: Some Hall polynomials for representation-finite trivial extension algebras. J. Algebra 197 (1997), 1-13. | DOI | MR | JFM

[20] Peng, L., Xiao, J.: Root categories and simple Lie algebras. J. Algebra 198 (1997), 19-56. | DOI | MR | JFM

[21] Quillen, D.: Higher algebraic $K$-theory. I. Algebr. $K$-Theory. I Lecture Notes in Mathematics 341. Springer, Berlin (1973), 85-147. | DOI | MR | JFM

[22] Riedtmann, C.: Lie algebras generated by indecomposables. J. Algebra 170 (1994), 526-546. | DOI | MR | JFM

[23] Ringel, C. M., Zhang, P.: From submodule categories to preprojective algebras. Math. Z. 278 (2014), 55-73. | DOI | MR | JFM

[24] Ruan, S., Sheng, J., Zhang, H.: Lie algebras arising from 1-cyclic perfect complexes. J. Algebra 586 (2021), 232-288. | DOI | MR | JFM

[25] Sevenhant, B., Bergh, M. Van den: On the double of the Hall algebra of a quiver. J. Algebra 221 (1999), 135-160. | DOI | MR | JFM

[26] Nasab, A. R. Shir Ali, Hosseini, S. N.: Pullback in partial morphism categories. Appl. Categ. Struct. 25 (2017), 197-225. | DOI | MR | JFM

[27] Wang, G.-J., Li, F.: On minimal horse-shoe lemma. Taiwanese J. Math. 12 (2008), 373-387. | DOI | MR | JFM

[28] Xiong, B.-L., Zhang, P., Zhang, Y.-H.: Auslander-Reiten translations in monomorphism categories. Forum Math. 26 (2014), 863-912. | DOI | MR | JFM

[29] Zhang, H.: Minimal generators of Hall algebras of 1-cyclic perfect complexes. Int. Math. Res. Not. 2021 (2021), 402-425. | DOI | MR | JFM

Cité par Sources :