Keywords: Hall algebra; morphism category; Heisenberg Lie algebra; simple Lie algebra
@article{10_21136_CMJ_2024_0103_24,
author = {Chen, QingHua and Zhang, Liwang},
title = {Hall algebra of morphism category},
journal = {Czechoslovak Mathematical Journal},
pages = {1145--1164},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0103-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0103-24/}
}
TY - JOUR AU - Chen, QingHua AU - Zhang, Liwang TI - Hall algebra of morphism category JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1145 EP - 1164 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0103-24/ DO - 10.21136/CMJ.2024.0103-24 LA - en ID - 10_21136_CMJ_2024_0103_24 ER -
Chen, QingHua; Zhang, Liwang. Hall algebra of morphism category. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1145-1164. doi: 10.21136/CMJ.2024.0103-24
[1] Auslander, M., Reiten, I.: On the representation type of triangular matrix rings. J. Lond. Math. Soc., II. Ser. 12 (1976), 371-382. | DOI | MR | JFM
[2] Bautista, R.: The category of morphisms between projective modules. Commun. Algebra 32 (2004), 4303-4331. | DOI | MR | JFM
[3] Berenstein, A., Greenstein, J.: Primitively generated Hall algebras. Pac. J. Math. 281 (2016), 287-331. | DOI | MR | JFM
[4] Birkhoff, G.: Subgroups of Abelian groups. Proc. Lond. Math. Soc. (1935), 385-401. | DOI | MR | JFM
[5] Bridgeland, T.: Quantum groups via Hall algebras of complexes. Ann. Math. (2) 177 (2013), 739-759. | DOI | MR | JFM
[6] Irelli, G. Cerulli, Feigin, E., Reineke, M.: Quiver Grassmannians and degenerate flag varieties. Algebra Number Theory 6 (2012), 165-194. | DOI | MR | JFM
[7] Chen, Q., Deng, B.: Cyclic complexes, Hall polynomials and simple Lie algebras. J. Algebra 440 (2015), 1-32. | DOI | MR | JFM
[8] Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs 150. AMS, Providence (2008). | DOI | MR | JFM
[9] Ding, M., Xu, F., Zhang, H.: Acyclic quantum cluster algebras via Hall algebras of morphisms. Math. Z. 296 (2020), 945-968. | DOI | MR | JFM
[10] Eiríksson, "O.: From submodule categories to the stable Auslander algebra. J. Algebra 486 (2017), 98-118. | DOI | MR | JFM
[11] Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6 (1972), 71-103 German. | DOI | MR | JFM
[12] Gabriel, P.: Indecomposable representations. II. Symposia Mathematica, Vol. XI Academic Press, London (1973), 81-104. | MR | JFM
[13] Guo, J. Y., Peng, L.: Universal PBW-basis of Hall-Ringel algebras and Hall polynomials. J. Algebra 198 (1997), 339-351. | DOI | MR | JFM
[14] Hafezi, R., Eshraghi, H.: Determination of some almost split sequences in morphism categories. J. Algebra 633 (2023), 88-113. | DOI | MR | JFM
[15] Hubery, A.: From triangulated categories to Lie algebras: A theorem of Peng and Xiao. Trends in Representation Theory of Algebras and Related Topics Contemporary Mathematics 406. AMS, Providence (2006), 51-66. | DOI | MR | JFM
[16] Kussin, D., Lenzing, H., Meltzer, H.: Nilpotent operators and weighted projective lines. J. Reine. Angew. Math. 685 (2013), 33-71. | DOI | MR | JFM
[17] Lin, Z.: Abelian quotients arising from extriangulated categories via morphism categories. Algebr. Represent. Theory 26 (2023), 117-136. | DOI | MR | JFM
[18] Luo, X.-H., Zhang, P.: Separated monic representations. I: Gorenstein-projective modules. J. Algebra 479 (2017), 1-34. | DOI | MR | JFM
[19] Peng, L.: Some Hall polynomials for representation-finite trivial extension algebras. J. Algebra 197 (1997), 1-13. | DOI | MR | JFM
[20] Peng, L., Xiao, J.: Root categories and simple Lie algebras. J. Algebra 198 (1997), 19-56. | DOI | MR | JFM
[21] Quillen, D.: Higher algebraic $K$-theory. I. Algebr. $K$-Theory. I Lecture Notes in Mathematics 341. Springer, Berlin (1973), 85-147. | DOI | MR | JFM
[22] Riedtmann, C.: Lie algebras generated by indecomposables. J. Algebra 170 (1994), 526-546. | DOI | MR | JFM
[23] Ringel, C. M., Zhang, P.: From submodule categories to preprojective algebras. Math. Z. 278 (2014), 55-73. | DOI | MR | JFM
[24] Ruan, S., Sheng, J., Zhang, H.: Lie algebras arising from 1-cyclic perfect complexes. J. Algebra 586 (2021), 232-288. | DOI | MR | JFM
[25] Sevenhant, B., Bergh, M. Van den: On the double of the Hall algebra of a quiver. J. Algebra 221 (1999), 135-160. | DOI | MR | JFM
[26] Nasab, A. R. Shir Ali, Hosseini, S. N.: Pullback in partial morphism categories. Appl. Categ. Struct. 25 (2017), 197-225. | DOI | MR | JFM
[27] Wang, G.-J., Li, F.: On minimal horse-shoe lemma. Taiwanese J. Math. 12 (2008), 373-387. | DOI | MR | JFM
[28] Xiong, B.-L., Zhang, P., Zhang, Y.-H.: Auslander-Reiten translations in monomorphism categories. Forum Math. 26 (2014), 863-912. | DOI | MR | JFM
[29] Zhang, H.: Minimal generators of Hall algebras of 1-cyclic perfect complexes. Int. Math. Res. Not. 2021 (2021), 402-425. | DOI | MR | JFM
Cité par Sources :