Hall algebra of morphism category
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1145-1164 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra $\mathcal {H}(C_2(\mathcal {P}))$, where $C_2(\mathcal {P})$ is the category of morphisms between projective objects in a finitary hereditary exact category $\mathcal A$. When $\mathcal A$ is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra $\mathcal {L}$, which is spanned by isoclasses of indecomposable objects in $C_2(\mathcal {P})$. As applications, we demonstrate that $\mathcal {L}$ contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with $\mathcal A$ as a Lie subquotient algebra of $\mathcal {L}$.
This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra $\mathcal {H}(C_2(\mathcal {P}))$, where $C_2(\mathcal {P})$ is the category of morphisms between projective objects in a finitary hereditary exact category $\mathcal A$. When $\mathcal A$ is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra $\mathcal {L}$, which is spanned by isoclasses of indecomposable objects in $C_2(\mathcal {P})$. As applications, we demonstrate that $\mathcal {L}$ contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with $\mathcal A$ as a Lie subquotient algebra of $\mathcal {L}$.
DOI : 10.21136/CMJ.2024.0103-24
Classification : 16G20, 17B20, 17B30, 18G05
Keywords: Hall algebra; morphism category; Heisenberg Lie algebra; simple Lie algebra
@article{10_21136_CMJ_2024_0103_24,
     author = {Chen, QingHua and Zhang, Liwang},
     title = {Hall algebra of morphism category},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1145--1164},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0103-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0103-24/}
}
TY  - JOUR
AU  - Chen, QingHua
AU  - Zhang, Liwang
TI  - Hall algebra of morphism category
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1145
EP  - 1164
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0103-24/
DO  - 10.21136/CMJ.2024.0103-24
LA  - en
ID  - 10_21136_CMJ_2024_0103_24
ER  - 
%0 Journal Article
%A Chen, QingHua
%A Zhang, Liwang
%T Hall algebra of morphism category
%J Czechoslovak Mathematical Journal
%D 2024
%P 1145-1164
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0103-24/
%R 10.21136/CMJ.2024.0103-24
%G en
%F 10_21136_CMJ_2024_0103_24
Chen, QingHua; Zhang, Liwang. Hall algebra of morphism category. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1145-1164. doi: 10.21136/CMJ.2024.0103-24

Cité par Sources :