Characterizations of incidence modules
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1127-1144
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be an associative ring and $M$ be a left $R$-module. We introduce the concept of the incidence module $I(X, M)$ of a locally finite partially ordered set $X$ over $M$. We study the properties of $I(X, M)$ and give the necessary and sufficient conditions for the incidence module to be an IN-module, \EIN -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of \EIN -modules is closed under direct product and upper triangular matrix modules.
Let $R$ be an associative ring and $M$ be a left $R$-module. We introduce the concept of the incidence module $I(X, M)$ of a locally finite partially ordered set $X$ over $M$. We study the properties of $I(X, M)$ and give the necessary and sufficient conditions for the incidence module to be an IN-module, \EIN -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of \EIN -modules is closed under direct product and upper triangular matrix modules.
Classification :
13C13, 16D70, 16D80, 16D99
Keywords: Ikeda Nakayama module; essential Ikeda Nakayama module; nil injective; nonsingular
Keywords: Ikeda Nakayama module; essential Ikeda Nakayama module; nil injective; nonsingular
@article{10_21136_CMJ_2024_0092_24,
author = {Ullah, Naseer and Yao, Hailou and Yuan, Qianqian and Azam, Muhammad},
title = {Characterizations of incidence modules},
journal = {Czechoslovak Mathematical Journal},
pages = {1127--1144},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0092-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0092-24/}
}
TY - JOUR AU - Ullah, Naseer AU - Yao, Hailou AU - Yuan, Qianqian AU - Azam, Muhammad TI - Characterizations of incidence modules JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1127 EP - 1144 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0092-24/ DO - 10.21136/CMJ.2024.0092-24 LA - en ID - 10_21136_CMJ_2024_0092_24 ER -
%0 Journal Article %A Ullah, Naseer %A Yao, Hailou %A Yuan, Qianqian %A Azam, Muhammad %T Characterizations of incidence modules %J Czechoslovak Mathematical Journal %D 2024 %P 1127-1144 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0092-24/ %R 10.21136/CMJ.2024.0092-24 %G en %F 10_21136_CMJ_2024_0092_24
Ullah, Naseer; Yao, Hailou; Yuan, Qianqian; Azam, Muhammad. Characterizations of incidence modules. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1127-1144. doi: 10.21136/CMJ.2024.0092-24
Cité par Sources :