Unified-like product of monoids and its regularity property
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1113-1125
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We first define a new monoid construction (called unified-like product $O\mathbin {\Diamond _{\Omega }}J$) under a unified product $O\bowtie J$ and the Schützenberger product $O\mathbin {\Diamond } J$. We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for $O\mathbin {\Diamond _{\Omega }}J$ to be regular.
We first define a new monoid construction (called unified-like product $O\mathbin {\Diamond _{\Omega }}J$) under a unified product $O\bowtie J$ and the Schützenberger product $O\mathbin {\Diamond } J$. We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for $O\mathbin {\Diamond _{\Omega }}J$ to be regular.
DOI : 10.21136/CMJ.2024.0081-24
Classification : 16S15, 20D40, 20L05
Keywords: unified product; Schützenberger product; regularity
@article{10_21136_CMJ_2024_0081_24,
     author = {K{\i}rm{\i}z{\i} \c{C}etinalp, Esra},
     title = {Unified-like product of monoids and its regularity property},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1113--1125},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0081-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0081-24/}
}
TY  - JOUR
AU  - Kırmızı Çetinalp, Esra
TI  - Unified-like product of monoids and its regularity property
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1113
EP  - 1125
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0081-24/
DO  - 10.21136/CMJ.2024.0081-24
LA  - en
ID  - 10_21136_CMJ_2024_0081_24
ER  - 
%0 Journal Article
%A Kırmızı Çetinalp, Esra
%T Unified-like product of monoids and its regularity property
%J Czechoslovak Mathematical Journal
%D 2024
%P 1113-1125
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0081-24/
%R 10.21136/CMJ.2024.0081-24
%G en
%F 10_21136_CMJ_2024_0081_24
Kırmızı Çetinalp, Esra. Unified-like product of monoids and its regularity property. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1113-1125. doi: 10.21136/CMJ.2024.0081-24

[1] Agore, A. L., Chirvăsitu, A., Ion, B., Militaru, G.: Bicrossed products for finite groups. Algebr. Represent. Theory 12 (2009), 481-488. | DOI | MR | JFM

[2] Agore, A. L., Frăţilă, D.: Crossed product of cyclic groups. Czech. Math. J. 60 (2010), 889-901. | DOI | MR | JFM

[3] Agore, A. L., Militaru, G.: Crossed product of groups: Applications. Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 1-17. | MR | JFM

[4] Agore, A. L., Militaru, G.: Unified products and split extensions of Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 1-15. | DOI | MR | JFM

[5] Agore, A. L., Militaru, G.: Unified products for Leibniz algebras: Applications. Linear Algebra Appl. 439 (2013), 2609-2633. | DOI | MR | JFM

[6] Agore, A. L., Militaru, G.: Extending structures for Lie algebras. Monatsh. Math. 174 (2014), 169-193. | DOI | MR | JFM

[7] Agore, A. L., Militaru, G.: Extending structures. I. The level of groups. Algebr. Represent. Theory 17 (2014), 831-848. | DOI | MR | JFM

[8] Agore, A. L., Militaru, G.: Unified products for Jordan algebras: Applications. J. Pure Appl. Algebra 227 (2023), Article ID 107268, 19 pages. | DOI | MR | JFM

[9] Ateş, F.: Some new monoid and group constructions under semi-direct products. Ars Comb. 91 (2009), 203-218. | MR | JFM

[10] Çetinalp, E. K.: Regularity of iterated crossed product of monoids. Bull. Int. Math. Virtual Inst. 12 (2022), 151-158. | MR

[11] Çetinalp, E. K.: Regularity of $n$-generalized Schützenberger product of monoids. J. Balıkesir Univ. Inst. Sci. Technology 24 (2022), 71-78. | DOI | MR

[12] Çetinalp, E. K.: $n$-generalized Schützenberger-crossed product of monoids. Ukr. J. Math. 76 (2024), 276-288. | DOI | MR | JFM

[13] Çetinalp, E. K., Karpuz, E. G.: Iterated crossed product of cyclic groups. Bull. Iran. Math. Soc. 44 (2018), 1493-1508. | DOI | MR | JFM

[14] Emin, A., Ateş, F., Ikikardeş, S., Cangül, I. N.: A new monoid construction under crossed products. J. Inequal. Appl. 2013 (2013), Article ID 244, 6 pages. | DOI | MR | JFM

[15] Howie, J. M., Ruškuc, N.: Constructions and presentations for monoids. Commun. Algebra 22 (1994), 6209-6224. | DOI | MR | JFM

[16] Karpuz, E. G., Ateş, F., Çevik, S.: Regular and $\pi$-inverse monoids under Schützenberger products. Algebras Groups Geom. 27 (2010), 455-469. | MR | JFM

[17] Karpuz, E. G., Çetinalp, E. K.: Some remarks on the Schützenberger product of $n$ monoids. Ric. Mat 73 (2024), 2159-2171. | DOI | MR | JFM

[18] Nico, W. R.: On the regularity of semidirect products. J. Algebra 80 (1983), 29-36. | DOI | MR | JFM

[19] Redziejowski, R. R.: Schützenberger-like products in non-free monoids. RAIRO, Inform. Théor. Appl. 29 (1995), 209-226. | DOI | MR | JFM

[20] Rudkovskij, M. A.: Twisted product of Lie groups. Sib. Math. J. 38 (1997), 969-977. | DOI | MR | JFM

[21] Schützenberger, M. P.: On finite monoids having only trivial subgroups. Inf. Control 8 (1965), 190-194. | DOI | MR | JFM

[22] Straubing, H.: A generalization of the Schützenberger product of finite monoids. Theor. Comput. Sci. 13 (1981), 137-150. | DOI | MR | JFM

Cité par Sources :