Keywords: unified product; Schützenberger product; regularity
@article{10_21136_CMJ_2024_0081_24,
author = {K{\i}rm{\i}z{\i} \c{C}etinalp, Esra},
title = {Unified-like product of monoids and its regularity property},
journal = {Czechoslovak Mathematical Journal},
pages = {1113--1125},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0081-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0081-24/}
}
TY - JOUR AU - Kırmızı Çetinalp, Esra TI - Unified-like product of monoids and its regularity property JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1113 EP - 1125 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0081-24/ DO - 10.21136/CMJ.2024.0081-24 LA - en ID - 10_21136_CMJ_2024_0081_24 ER -
%0 Journal Article %A Kırmızı Çetinalp, Esra %T Unified-like product of monoids and its regularity property %J Czechoslovak Mathematical Journal %D 2024 %P 1113-1125 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0081-24/ %R 10.21136/CMJ.2024.0081-24 %G en %F 10_21136_CMJ_2024_0081_24
Kırmızı Çetinalp, Esra. Unified-like product of monoids and its regularity property. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1113-1125. doi: 10.21136/CMJ.2024.0081-24
[1] Agore, A. L., Chirvăsitu, A., Ion, B., Militaru, G.: Bicrossed products for finite groups. Algebr. Represent. Theory 12 (2009), 481-488. | DOI | MR | JFM
[2] Agore, A. L., Frăţilă, D.: Crossed product of cyclic groups. Czech. Math. J. 60 (2010), 889-901. | DOI | MR | JFM
[3] Agore, A. L., Militaru, G.: Crossed product of groups: Applications. Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 1-17. | MR | JFM
[4] Agore, A. L., Militaru, G.: Unified products and split extensions of Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 1-15. | DOI | MR | JFM
[5] Agore, A. L., Militaru, G.: Unified products for Leibniz algebras: Applications. Linear Algebra Appl. 439 (2013), 2609-2633. | DOI | MR | JFM
[6] Agore, A. L., Militaru, G.: Extending structures for Lie algebras. Monatsh. Math. 174 (2014), 169-193. | DOI | MR | JFM
[7] Agore, A. L., Militaru, G.: Extending structures. I. The level of groups. Algebr. Represent. Theory 17 (2014), 831-848. | DOI | MR | JFM
[8] Agore, A. L., Militaru, G.: Unified products for Jordan algebras: Applications. J. Pure Appl. Algebra 227 (2023), Article ID 107268, 19 pages. | DOI | MR | JFM
[9] Ateş, F.: Some new monoid and group constructions under semi-direct products. Ars Comb. 91 (2009), 203-218. | MR | JFM
[10] Çetinalp, E. K.: Regularity of iterated crossed product of monoids. Bull. Int. Math. Virtual Inst. 12 (2022), 151-158. | MR
[11] Çetinalp, E. K.: Regularity of $n$-generalized Schützenberger product of monoids. J. Balıkesir Univ. Inst. Sci. Technology 24 (2022), 71-78. | DOI | MR
[12] Çetinalp, E. K.: $n$-generalized Schützenberger-crossed product of monoids. Ukr. J. Math. 76 (2024), 276-288. | DOI | MR | JFM
[13] Çetinalp, E. K., Karpuz, E. G.: Iterated crossed product of cyclic groups. Bull. Iran. Math. Soc. 44 (2018), 1493-1508. | DOI | MR | JFM
[14] Emin, A., Ateş, F., Ikikardeş, S., Cangül, I. N.: A new monoid construction under crossed products. J. Inequal. Appl. 2013 (2013), Article ID 244, 6 pages. | DOI | MR | JFM
[15] Howie, J. M., Ruškuc, N.: Constructions and presentations for monoids. Commun. Algebra 22 (1994), 6209-6224. | DOI | MR | JFM
[16] Karpuz, E. G., Ateş, F., Çevik, S.: Regular and $\pi$-inverse monoids under Schützenberger products. Algebras Groups Geom. 27 (2010), 455-469. | MR | JFM
[17] Karpuz, E. G., Çetinalp, E. K.: Some remarks on the Schützenberger product of $n$ monoids. Ric. Mat 73 (2024), 2159-2171. | DOI | MR | JFM
[18] Nico, W. R.: On the regularity of semidirect products. J. Algebra 80 (1983), 29-36. | DOI | MR | JFM
[19] Redziejowski, R. R.: Schützenberger-like products in non-free monoids. RAIRO, Inform. Théor. Appl. 29 (1995), 209-226. | DOI | MR | JFM
[20] Rudkovskij, M. A.: Twisted product of Lie groups. Sib. Math. J. 38 (1997), 969-977. | DOI | MR | JFM
[21] Schützenberger, M. P.: On finite monoids having only trivial subgroups. Inf. Control 8 (1965), 190-194. | DOI | MR | JFM
[22] Straubing, H.: A generalization of the Schützenberger product of finite monoids. Theor. Comput. Sci. 13 (1981), 137-150. | DOI | MR | JFM
Cité par Sources :