Left EM rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 839-867
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R[x]$ be the polynomial ring over a ring $R$ with unity. A polynomial $f(x)\in R[x]$ is referred to as a left annihilating content polynomial (left ACP) if there exist an element $r \in R$ and a polynomial $g(x) \in R[x]$ such that $f(x)=rg(x)$ and $g(x)$ is not a right zero-divisor polynomial in $R[x]$. A ring $R$ is referred to as left EM if each polynomial $f(x) \in R[x]$ is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover, several extensions of EM rings are investigated, including polynomial rings, matrix rings, and Ore localizations.
Let $R[x]$ be the polynomial ring over a ring $R$ with unity. A polynomial $f(x)\in R[x]$ is referred to as a left annihilating content polynomial (left ACP) if there exist an element $r \in R$ and a polynomial $g(x) \in R[x]$ such that $f(x)=rg(x)$ and $g(x)$ is not a right zero-divisor polynomial in $R[x]$. A ring $R$ is referred to as left EM if each polynomial $f(x) \in R[x]$ is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover, several extensions of EM rings are investigated, including polynomial rings, matrix rings, and Ore localizations.
DOI : 10.21136/CMJ.2024.0071-24
Classification : 16E50, 16P40, 16U80, 16W99
Keywords: EM ring; annihilating content polynomial; polynomial ring; uniserial ring; generalized morphic ring; zero-divisor
@article{10_21136_CMJ_2024_0071_24,
     author = {Baeck, Jongwook},
     title = {Left {EM} rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {839--867},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0071-24},
     mrnumber = {4804963},
     zbl = {07953681},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0071-24/}
}
TY  - JOUR
AU  - Baeck, Jongwook
TI  - Left EM rings
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 839
EP  - 867
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0071-24/
DO  - 10.21136/CMJ.2024.0071-24
LA  - en
ID  - 10_21136_CMJ_2024_0071_24
ER  - 
%0 Journal Article
%A Baeck, Jongwook
%T Left EM rings
%J Czechoslovak Mathematical Journal
%D 2024
%P 839-867
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0071-24/
%R 10.21136/CMJ.2024.0071-24
%G en
%F 10_21136_CMJ_2024_0071_24
Baeck, Jongwook. Left EM rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 839-867. doi: 10.21136/CMJ.2024.0071-24

[1] Abuosba, E., Al-Azaizeh, M., Ghanem, M.: Prüfer conditions vs EM conditions. Commun. Korean Math. Soc. 38 (2023), 69-77. | DOI | MR | JFM

[2] Abuosba, E., Ghanem, M.: Annihilating content in polynomial and power series rings. J. Korean Math. Soc. 56 (2019), 1403-1418. | DOI | MR | JFM

[3] Agayev, N., Güngöroğlu, G., Harmanci, A., Halicioğlu, S.: Abelian modules. Acta Math. Univ. Comen., New Ser. 78 (2009), 235-244. | MR | JFM

[4] Anderson, D. D., Abuosba, E., Ghanem, M.: Annihilating content polynomials and EM- rings. J. Algebra Appl. 21 (2022), Article ID 2250092, 18 pages. | DOI | MR | JFM

[5] Anderson, D. D., Anderson, D. F., Markanda, R.: The rings $R(X)$ and $R\langle X \rangle$. J. Algebra 95 (1985), 96-115. | DOI | MR | JFM

[6] Anderson, D. D., Camillo, V.: Armendariz rings and Gaussian rings. Commun. Algebra 26 (1998), 2265-2272. | DOI | MR | JFM

[7] Anderson, D. D., Dumitrescu, T.: $S$-Noetherian rings. Commun. Algebra 30 (2002), 4407-4416. | DOI | MR | JFM

[8] Baeck, J.: The rings where zero-divisor polynomials have zero-divisor coefficients. Rocky Mt. J. Math. 51 (2021), 771-785. | DOI | MR | JFM

[9] Baeck, J.: On modules related to McCoy modules. Open Math. 20 (2022), 1734-1752. | DOI | MR | JFM

[10] Baeck, J.: On $S$-principal right ideal rings. AIMS Math. 7 (2022), 12106-12122. | DOI | MR

[11] Baeck, J.: $S$-injective modules. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 118 (2024), Article ID 20, 20 pages. | DOI | MR | JFM

[12] Baeck, J., Kim, N. K., Kwak, T. K., Lee, Y.: Structure of annihilators of powers. Turk. J. Math. 46 (2022), 1945-1964. | DOI | MR | JFM

[13] Baeck, J., Kim, N. K., Lee, Y., Nielsen, P. P.: Zero-divisor placement, a condition of Camillo, and the McCoy property. J. Pure Appl. Algebra 224 (2020), Article ID 106432, 13 pages. | DOI | MR | JFM

[14] Baeck, J., Lee, G., Lim, J. W.: $S$-Noetherian rings and their extensions. Taiwanese J. Math. 20 (2016), 1231-1250. | DOI | MR | JFM

[15] Bergman, G. M.: The diamond lemma for ring theory. Adv. Math. 29 (1978), 178-218. | DOI | MR | JFM

[16] Bilgin, Z., Reyes, M. L., Tekir, Ü.: On right $S$-Noetherian rings and $S$-Noetherian modules. Commun. Algebra 46 (2018), 863-869. | DOI | MR | JFM

[17] Camillo, V., Nielsen, P. P.: McCoy rings and zero-divisors. J. Pure Appl. Algebra 212 (2008), 599-615. | DOI | MR | JFM

[18] Cannon, G. A., Neuerburg, K. M.: Ideals in Dorroh extensions of rings. Missouri J. Math. Sci. 20 (2008), 165-168. | DOI | JFM

[19] Cui, J., Chen, J.: On McCoy modules. Bull. Korean Math. Soc. 48 (2011), 23-33. | DOI | MR | JFM

[20] Endo, S.: Note on PP rings (A supplement to Hattori's paper). Nagoya Math. J. 17 (1960), 167-170. | DOI | MR | JFM

[21] K. R. Goodearl, R. B. Warfield, Jr.: An Introduction to Noncommutative Noetherian Rings. London Mathematical Society Student Texts 61. Cambridge University Press, Cambridge (2004). | DOI | MR | JFM

[22] Hashemi, E., Estaji, A. AS., Ziembowski, M.: Answers to some questions concerning rings with property (A). Proc. Edinb. Math. Soc., II. Ser. 60 (2017), 651-664. | DOI | MR | JFM

[23] Hong, C. Y., Jeon, Y. C., Kim, N. K., Lee, Y.: The McCoy condition on noncommutative rings. Commun. Algebra 39 (2011), 1809-1825. | DOI | MR | JFM

[24] Hong, C. Y., Kim, N. K., Lee, Y., Nielsen, P. P.: The minimal prime spectrum of rings with annihilator conditions. J. Pure Appl. Algebra 213 (2009), 1478-1488. | DOI | MR | JFM

[25] Hong, C. Y., Kim, N. K., Lee, Y., Ryu, S. J.: Rings with property (A) and their extensions. J. Algebra 315 (2007), 612-628. | DOI | MR | JFM

[26] Huckaba, J. A., Keller, J. M.: Annihilation of ideals in commutative rings. Pac. J. Math. 83 (1979), 375-379. | DOI | MR | JFM

[27] Jordan, D. A.: A left Noetherian, right Ore domain which is not right Noetherian. Bull. Lond. Math. Soc. 12 (1980), 202-204. | DOI | MR | JFM

[28] Kaplansky, I.: Commutative Rings. University of Chicago Press, Chicago (1974). | MR | JFM

[29] Kim, N. K., Lee, Y.: Armendariz rings and reduced rings. J. Algebra 223 (2000), 477-488. | DOI | MR | JFM

[30] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. Springer, New York (1991). | DOI | MR | JFM

[31] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). | DOI | MR | JFM

[32] Lang, S.: Algebra. Graduate Texts in Mathematics 211. Springer, New York (2002). | DOI | MR | JFM

[33] Lee, G., Baeck, J., Lim, J. W.: Eakin-Nagata-Eisenbud theorem for right $S$-Noetherian rings. Taiwanese J. Math. 27 (2023), 237-257. | DOI | MR | JFM

[34] Lee, T.-K., Zhou, Y.: Armendariz and reduced rings. Commun. Algebra 32 (2004), 2287-2299. | DOI | MR | JFM

[35] Marks, G., Mazurek, R., Ziembowski, M.: A unified approach to various generalizations of Armendariz rings. Bull. Aust. Math. Soc. 81 (2010), 361-397. | DOI | MR | JFM

[36] Mazurek, R., Ziembowski, M.: Right Gaussian rings and skew power series rings. J. Algebra 330 (2011), 130-146. | DOI | MR | JFM

[37] Nielsen, P. P.: Semi-commutativity and the McCoy condition. J. Algebra 298 (2006), 134-141. | DOI | MR | JFM

[38] Rege, M. B., Chhawchharia, S.: Armendariz rings. Proc. Japan Acad., Ser. A 73 (1997), 14-17. | DOI | MR | JFM

Cité par Sources :