Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1097-1112 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a class of unbounded nonhyperbolic complete Reinhardt domains $$ D_{n,m,k}^{\mu ,p,s}:=\Big \{(z,w_1,\cdots ,w_m)\in \mathbb {C}^{n}\times \mathbb {C}^{k_1}\times \cdots \times \mathbb {C}^{k_m}\colon \frac {\| w_1\|^{2p_1}}{{\rm e}^{-\mu _1\| z\|^{s}}}+\cdots +\frac {\| w_m\|^{2p_m}}{{\rm e}^{-\mu _m\| z\|^{s}}}1\Big \}, $$ where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_{n,m,k}^{\mu ,p,s})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.
We consider a class of unbounded nonhyperbolic complete Reinhardt domains $$ D_{n,m,k}^{\mu ,p,s}:=\Big \{(z,w_1,\cdots ,w_m)\in \mathbb {C}^{n}\times \mathbb {C}^{k_1}\times \cdots \times \mathbb {C}^{k_m}\colon \frac {\| w_1\|^{2p_1}}{{\rm e}^{-\mu _1\| z\|^{s}}}+\cdots +\frac {\| w_m\|^{2p_m}}{{\rm e}^{-\mu _m\| z\|^{s}}}1\Big \}, $$ where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_{n,m,k}^{\mu ,p,s})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.
DOI : 10.21136/CMJ.2024.0067-24
Classification : 32A36, 32Q02, 47B35
Keywords: unbounded complete Reinhardt domain; Hankel operator; Hilbert-Schmidt operator
@article{10_21136_CMJ_2024_0067_24,
     author = {He, Le and Tang, Yanyan},
     title = {Hilbert-Schmidt {Hankel} operators with anti-holomorphic symbols on a class of unbounded complete {Reinhardt} domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1097--1112},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0067-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0067-24/}
}
TY  - JOUR
AU  - He, Le
AU  - Tang, Yanyan
TI  - Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1097
EP  - 1112
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0067-24/
DO  - 10.21136/CMJ.2024.0067-24
LA  - en
ID  - 10_21136_CMJ_2024_0067_24
ER  - 
%0 Journal Article
%A He, Le
%A Tang, Yanyan
%T Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
%J Czechoslovak Mathematical Journal
%D 2024
%P 1097-1112
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0067-24/
%R 10.21136/CMJ.2024.0067-24
%G en
%F 10_21136_CMJ_2024_0067_24
He, Le; Tang, Yanyan. Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1097-1112. doi: 10.21136/CMJ.2024.0067-24

Cité par Sources :