Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1097-1112
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We consider a class of unbounded nonhyperbolic complete Reinhardt domains $$ D_{n,m,k}^{\mu ,p,s}:=\Big \{(z,w_1,\cdots ,w_m)\in \mathbb {C}^{n}\times \mathbb {C}^{k_1}\times \cdots \times \mathbb {C}^{k_m}\colon \frac {\| w_1\|^{2p_1}}{{\rm e}^{-\mu _1\| z\|^{s}}}+\cdots +\frac {\| w_m\|^{2p_m}}{{\rm e}^{-\mu _m\| z\|^{s}}}1\Big \}, $$ where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_{n,m,k}^{\mu ,p,s})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.
We consider a class of unbounded nonhyperbolic complete Reinhardt domains $$ D_{n,m,k}^{\mu ,p,s}:=\Big \{(z,w_1,\cdots ,w_m)\in \mathbb {C}^{n}\times \mathbb {C}^{k_1}\times \cdots \times \mathbb {C}^{k_m}\colon \frac {\| w_1\|^{2p_1}}{{\rm e}^{-\mu _1\| z\|^{s}}}+\cdots +\frac {\| w_m\|^{2p_m}}{{\rm e}^{-\mu _m\| z\|^{s}}}1\Big \}, $$ where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_{n,m,k}^{\mu ,p,s})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.
Classification :
32A36, 32Q02, 47B35
Keywords: unbounded complete Reinhardt domain; Hankel operator; Hilbert-Schmidt operator
Keywords: unbounded complete Reinhardt domain; Hankel operator; Hilbert-Schmidt operator
@article{10_21136_CMJ_2024_0067_24,
author = {He, Le and Tang, Yanyan},
title = {Hilbert-Schmidt {Hankel} operators with anti-holomorphic symbols on a class of unbounded complete {Reinhardt} domains},
journal = {Czechoslovak Mathematical Journal},
pages = {1097--1112},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0067-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0067-24/}
}
TY - JOUR AU - He, Le AU - Tang, Yanyan TI - Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1097 EP - 1112 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0067-24/ DO - 10.21136/CMJ.2024.0067-24 LA - en ID - 10_21136_CMJ_2024_0067_24 ER -
%0 Journal Article %A He, Le %A Tang, Yanyan %T Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains %J Czechoslovak Mathematical Journal %D 2024 %P 1097-1112 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0067-24/ %R 10.21136/CMJ.2024.0067-24 %G en %F 10_21136_CMJ_2024_0067_24
He, Le; Tang, Yanyan. Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1097-1112. doi: 10.21136/CMJ.2024.0067-24
Cité par Sources :