Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1097-1112
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a class of unbounded nonhyperbolic complete Reinhardt domains $$ D_{n,m,k}^{\mu ,p,s}:=\Big \{(z,w_1,\cdots ,w_m)\in \mathbb {C}^{n}\times \mathbb {C}^{k_1}\times \cdots \times \mathbb {C}^{k_m}\colon \frac {\| w_1\|^{2p_1}}{{\rm e}^{-\mu _1\| z\|^{s}}}+\cdots +\frac {\| w_m\|^{2p_m}}{{\rm e}^{-\mu _m\| z\|^{s}}}1\Big \}, $$ where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_{n,m,k}^{\mu ,p,s})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.
We consider a class of unbounded nonhyperbolic complete Reinhardt domains $$ D_{n,m,k}^{\mu ,p,s}:=\Big \{(z,w_1,\cdots ,w_m)\in \mathbb {C}^{n}\times \mathbb {C}^{k_1}\times \cdots \times \mathbb {C}^{k_m}\colon \frac {\| w_1\|^{2p_1}}{{\rm e}^{-\mu _1\| z\|^{s}}}+\cdots +\frac {\| w_m\|^{2p_m}}{{\rm e}^{-\mu _m\| z\|^{s}}}1\Big \}, $$ where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_{n,m,k}^{\mu ,p,s})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.
DOI : 10.21136/CMJ.2024.0067-24
Classification : 32A36, 32Q02, 47B35
Keywords: unbounded complete Reinhardt domain; Hankel operator; Hilbert-Schmidt operator
@article{10_21136_CMJ_2024_0067_24,
     author = {He, Le and Tang, Yanyan},
     title = {Hilbert-Schmidt {Hankel} operators with anti-holomorphic symbols on a class of unbounded complete {Reinhardt} domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1097--1112},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0067-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0067-24/}
}
TY  - JOUR
AU  - He, Le
AU  - Tang, Yanyan
TI  - Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1097
EP  - 1112
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0067-24/
DO  - 10.21136/CMJ.2024.0067-24
LA  - en
ID  - 10_21136_CMJ_2024_0067_24
ER  - 
%0 Journal Article
%A He, Le
%A Tang, Yanyan
%T Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
%J Czechoslovak Mathematical Journal
%D 2024
%P 1097-1112
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0067-24/
%R 10.21136/CMJ.2024.0067-24
%G en
%F 10_21136_CMJ_2024_0067_24
He, Le; Tang, Yanyan. Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1097-1112. doi: 10.21136/CMJ.2024.0067-24

[1] Arazy, J.: Boundedness and compactness of generalized Hankel operators on bounded symmetric domains. J. Funct. Anal. 137 (1996), 97-151. | DOI | MR | JFM

[2] Arazy, J., Fisher, S. D., Janson, S., Peetre, J.: An identity for reproducing kernels in a planar domain and Hilbert-Schmidt Hankel operators. J. Reine Angew. Math. 406 (1990), 179-199. | DOI | MR | JFM

[3] Arazy, J., Fisher, S. D., Peetre, J.: Hankel operators on weighted bergman spaces. Am. J. Math. 110 (1988), 989-1053. | DOI | MR | JFM

[4] Beberok, T., Göğüş, N. G.: Hilbert-Schmidt Hankel operators over semi-Reinhardt domains. Available at , 9 pages. | arXiv | DOI

[5] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. | DOI | MR | JFM

[6] Bi, E., Tu, Z.: Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains. Pac. J. Math. 297 (2018), 277-297. | DOI | MR | JFM

[7] Çelik, M., Zeytuncu, Y. E.: Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complex ellipsoids. Integral Equations Oper. Theory 76 (2013), 589-599. | DOI | MR | JFM

[8] Çelik, M., Zeytuncu, Y. E.: Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains. Czech. Math. J. 67 (2017), 207-217. | DOI | MR | JFM

[9] Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics 19. AMS, Providence (2001). | DOI | MR | JFM

[10] D'Angelo, J. P.: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23-34. | DOI | MR | JFM

[11] Haslinger, F., Lamel, B.: Spectral properties of the canonical solution operator to $\bar{\partial}$. J. Funct. Anal. 255 (2008), 13-24. | DOI | MR | JFM

[12] Huo, Z.: The Bergman kernel on some Hartogs domains. J. Geom. Anal. 27 (2017), 271-299. | DOI | MR | JFM

[13] Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), 637-642. | DOI | MR | JFM

[14] Kim, H., Yamamori, A.: The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains. Czech. Math. J. 68 (2018), 611-631. | DOI | MR | JFM

[15] Krantz, S. G., Li, S.-Y., Rochberg, R.: The effect of boundary geometry on Hankel operators belonging to the trace ideals of Bergman spaces. Integral Equations Oper. Theory 28 (1997), 196-213. | DOI | MR | JFM

[16] Le, T.: Hilbert-Schmidt Hankel operators over complete Reinhardt domains. Integral Equations Oper. Theory 78 (2014), 515-522. | DOI | MR | JFM

[17] Li, H.: Schatten class Hankel operators on the Bergman spaces of strongly pseudoconvex domains. Proc. Am. Math. Soc. 119 (1993), 1211-1221. | DOI | MR | JFM

[18] Paris, R. B.: A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2002), 323-339. | DOI | MR | JFM

[19] Peloso, M. M.: Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains. Ill. J. Math. 38 (1994), 223-249. | DOI | MR | JFM

[20] Retherford, J. R.: Hilbert Space: Compact Operators and the Trace Theorem. London Mathematical Society Student Texts 27. Cambridge University Press, Cambridge (1993). | DOI | MR | JFM

[21] Schneider, G.: A different proof for the non-existence of Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on the Bergman space. Aust. J. Math. Anal. Appl. 4 (2007), Article ID 1, 7 pages. | MR | JFM

[22] Temme, N. M.: Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters. Methods Appl. Anal. 3 (1996), 335-344. | DOI | MR | JFM

[23] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl. 419 (2014), 703-714. | DOI | MR | JFM

[24] Yamamori, A.: The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function. Complex Var. Elliptic Equ. 58 (2013), 783-793. | DOI | MR | JFM

[25] Zhu, K.: Hilbert-Schmidt Hankel operators on the Bergman space. Proc. Am. Math. Soc. 109 (1990), 721-730. | DOI | MR | JFM

[26] Zhu, K.: Schatten class Hankel operators on the Bergman space of the unit ball. Am. J. Math. 113 (1991), 147-167. | DOI | MR | JFM

Cité par Sources :