The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 231-246
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mu $ be a positive Borel measure on the complex plane $\mathbb {C}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb {N}$. We study the generalized Toeplitz operators $T_{\mu }^{(j)}$ on the Fock space $F_{\alpha }^{2}$. We prove that $T_{\mu }^{(j)}$ is bounded (or compact) on $F_{\alpha }^{2}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p\infty $.
Let $\mu $ be a positive Borel measure on the complex plane $\mathbb {C}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb {N}$. We study the generalized Toeplitz operators $T_{\mu }^{(j)}$ on the Fock space $F_{\alpha }^{2}$. We prove that $T_{\mu }^{(j)}$ is bounded (or compact) on $F_{\alpha }^{2}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p\infty $.
DOI : 10.21136/CMJ.2024.0066-23
Classification : 30H20, 47B35
Keywords: generalized Toeplitz operator; boundedness; compactness; Schatten class; Fock space
@article{10_21136_CMJ_2024_0066_23,
     author = {Xu, Chunxu and Yu, Tao},
     title = {The generalized {Toeplitz} operators on the {Fock} space $F_{\alpha }^{2}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {231--246},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2024.0066-23},
     mrnumber = {4717831},
     zbl = {07893376},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0066-23/}
}
TY  - JOUR
AU  - Xu, Chunxu
AU  - Yu, Tao
TI  - The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 231
EP  - 246
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0066-23/
DO  - 10.21136/CMJ.2024.0066-23
LA  - en
ID  - 10_21136_CMJ_2024_0066_23
ER  - 
%0 Journal Article
%A Xu, Chunxu
%A Yu, Tao
%T The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$
%J Czechoslovak Mathematical Journal
%D 2024
%P 231-246
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0066-23/
%R 10.21136/CMJ.2024.0066-23
%G en
%F 10_21136_CMJ_2024_0066_23
Xu, Chunxu; Yu, Tao. The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 231-246. doi: 10.21136/CMJ.2024.0066-23

[1] Abreu, L. D., Faustino, N.: On Toeplitz operators and localization operators. Proc. Am. Math. Soc. 143 (2015), 4317-4323. | DOI | MR | JFM

[2] Coburn, L. A.: The Bargmann isometry and Gabor-Daubechies wavelet localization operators. Systems, Approximation, Singular Integral Operators, and Related Topics Operator Theory: Advances and Applications 129. Birkhäuser, Basel (2001), 169-178. | DOI | MR | JFM

[3] Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators. J. Funct. Anal. 205 (2003), 107-131. | DOI | MR | JFM

[4] Daubechies, I.: Time-frequency localization operators: A geometric phase space approach. IEEE Trans. Inf. Theory 34 (1988), 605-612. | DOI | MR | JFM

[5] Engliš, M.: Toeplitz operators and group representations. J. Fourier Anal. 13 (2007), 243-265. | DOI | MR | JFM

[6] Engliš, M.: Toeplitz operators and localization operators. Trans. Am. Math. Soc. 361 (2009), 1039-1052. | DOI | MR | JFM

[7] Feichtinger, H. G., Nowak, K.: A Szegö-type theorem for Gabor-Toeplitz localization operators. Mich. Math. J. 49 (2001), 13-21. | DOI | MR | JFM

[8] Hu, Z., Lv, X.: Toeplitz operators from one Fock space to another. Integral Equations Oper. Theory 70 (2011), 541-559. | DOI | MR | JFM

[9] Isralowitz, J., Zhu, K.: Toeplitz operators on the Fock space. Integral Equations Oper. Theory 66 (2010), 593-611. | DOI | MR | JFM

[10] Lo, M.-L.: The Bargmann transform and windowed Fourier localization. Integral Equations Oper. Theory 57 (2007), 397-412. | DOI | MR | JFM

[11] Luecking, D. H.: Trace ideal criteria for Toeplitz operators. J. Funct. Anal. 73 (1987), 345-368. | DOI | MR | JFM

[12] Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991). | MR | JFM

[13] Suárez, D.: Approximation and symbolic calculus for Toeplitz algebras on the Bergman space. Rev. Mat. Iberoam. 20 (2004), 563-610. | DOI | MR | JFM

[14] Suárez, D.: A generalization of Toeplitz operators on the Bergman space. J. Oper. Theory 73 (2015), 315-332. | DOI | MR | JFM

[15] Wang, X., Cao, G., Zhu, K.: Boundedness and compactness of operators on the Fock space. Integral Equations Oper. Theory 77 (2013), 355-370. | DOI | MR | JFM

[16] Xu, C., Yu, T.: Schatten class generalized Toeplitz operators on the Bergman space. Czech. Math. J. 71 (2021), 1173-1188. | DOI | MR | JFM

[17] Zhu, K.: Positive Toeplitz operators on the weighted Bergman spaces of bounded symmetric domains. J. Oper. Theory 20 (1988), 329-357. | MR | JFM

[18] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138. AMS, Providence (2007). | DOI | MR | JFM

[19] Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics 263. Springer, New York (2012). | DOI | MR | JFM

Cité par Sources :