The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 231-246
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mu $ be a positive Borel measure on the complex plane $\mathbb {C}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb {N}$. We study the generalized Toeplitz operators $T_{\mu }^{(j)}$ on the Fock space $F_{\alpha }^{2}$. We prove that $T_{\mu }^{(j)}$ is bounded (or compact) on $F_{\alpha }^{2}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p\infty $.
Let $\mu $ be a positive Borel measure on the complex plane $\mathbb {C}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb {N}$. We study the generalized Toeplitz operators $T_{\mu }^{(j)}$ on the Fock space $F_{\alpha }^{2}$. We prove that $T_{\mu }^{(j)}$ is bounded (or compact) on $F_{\alpha }^{2}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p\infty $.
DOI :
10.21136/CMJ.2024.0066-23
Classification :
30H20, 47B35
Keywords: generalized Toeplitz operator; boundedness; compactness; Schatten class; Fock space
Keywords: generalized Toeplitz operator; boundedness; compactness; Schatten class; Fock space
@article{10_21136_CMJ_2024_0066_23,
author = {Xu, Chunxu and Yu, Tao},
title = {The generalized {Toeplitz} operators on the {Fock} space $F_{\alpha }^{2}$},
journal = {Czechoslovak Mathematical Journal},
pages = {231--246},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2024.0066-23},
mrnumber = {4717831},
zbl = {07893376},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0066-23/}
}
TY - JOUR
AU - Xu, Chunxu
AU - Yu, Tao
TI - The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$
JO - Czechoslovak Mathematical Journal
PY - 2024
SP - 231
EP - 246
VL - 74
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0066-23/
DO - 10.21136/CMJ.2024.0066-23
LA - en
ID - 10_21136_CMJ_2024_0066_23
ER -
%0 Journal Article
%A Xu, Chunxu
%A Yu, Tao
%T The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$
%J Czechoslovak Mathematical Journal
%D 2024
%P 231-246
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0066-23/
%R 10.21136/CMJ.2024.0066-23
%G en
%F 10_21136_CMJ_2024_0066_23
Xu, Chunxu; Yu, Tao. The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 231-246. doi: 10.21136/CMJ.2024.0066-23
Cité par Sources :