Characterizing finite groups whose enhanced power graphs have universal vertices
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 637-645
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \{1\}$ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.
Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \{1\}$ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.
DOI : 10.21136/CMJ.2024.0065-24
Classification : 05C25, 20D25
Keywords: enhanced power graph; universal vertex; diameter
@article{10_21136_CMJ_2024_0065_24,
     author = {Costanzo, David G. and Lewis, Mark L. and Schmidt, Stefano and Tsegaye, Eyob and Udell, Gabe},
     title = {Characterizing finite groups whose enhanced power graphs have universal vertices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {637--645},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0065-24},
     mrnumber = {4764545},
     zbl = {07893404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/}
}
TY  - JOUR
AU  - Costanzo, David G.
AU  - Lewis, Mark L.
AU  - Schmidt, Stefano
AU  - Tsegaye, Eyob
AU  - Udell, Gabe
TI  - Characterizing finite groups whose enhanced power graphs have universal vertices
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 637
EP  - 645
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/
DO  - 10.21136/CMJ.2024.0065-24
LA  - en
ID  - 10_21136_CMJ_2024_0065_24
ER  - 
%0 Journal Article
%A Costanzo, David G.
%A Lewis, Mark L.
%A Schmidt, Stefano
%A Tsegaye, Eyob
%A Udell, Gabe
%T Characterizing finite groups whose enhanced power graphs have universal vertices
%J Czechoslovak Mathematical Journal
%D 2024
%P 637-645
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/
%R 10.21136/CMJ.2024.0065-24
%G en
%F 10_21136_CMJ_2024_0065_24
Costanzo, David G.; Lewis, Mark L.; Schmidt, Stefano; Tsegaye, Eyob; Udell, Gabe. Characterizing finite groups whose enhanced power graphs have universal vertices. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 637-645. doi: 10.21136/CMJ.2024.0065-24

[1] Aalipour, G., Akbari, S., Cameron, P. J., Nikandish, R., Shaveisi, F.: On the structure of the power graph and the enhanced power graph of a group. Electron. J. Comb. 24 (2017), Article ID P3.16, 18 pages \99999DOI99999 10.37236/6497 . | MR | JFM

[2] Abdollahi, A., Hassanabadi, A. Mohammadi: Noncyclic graph of a group. Commun. Algebra 35 (2007), 2057-2081. | DOI | MR | JFM

[3] Bera, S., Bhuniya, A. K.: On enhanced power graphs of finite groups. J. Algebra Appl. 17 (2018), Article ID 1850146, 8 pages. | DOI | MR | JFM

[4] Bera, S., Dey, H. K.: On the proper enhanced power graphs of finite nilpotent groups. J. Group Theory 25 (2022), 1109-1131. | DOI | MR | JFM

[5] Bera, S., Dey, H. K., Mukherjee, S. K.: On the connectivity of enhanced power graphs of finite groups. Graphs Comb. 37 (2021), 591-603. | DOI | MR | JFM

[6] Berkovich, Y.: Groups of Prime Power Order. Volume 1. de Gruyter Expositions in Mathematics 46. Walter De Gruyter, Berlin (2008). | DOI | MR | JFM

[7] Cameron, P. J.: Graphs defined on groups. Int. J. Group Theory 11 (2022), 53-107. | DOI | MR | JFM

[8] Costanzo, D. G., Lewis, M. L., Schmidt, S., Tsegaye, E., Udell, G.: The cyclic graph of a $Z$-group. Bull. Aust. Math. Soc. 104 (2021), 295-301. | DOI | MR | JFM

[9] Imperatore, D.: On a graph associated with a group. Ischia Group Theory 2008 World Scientific, Hackensack (2009), 100-115. | DOI | MR | JFM

[10] Imperatore, D., Lewis, M. L.: A condition in finite solvable groups related to cyclic subgroups. Bull. Aust. Math. Soc. 83 (2011), 267-272. | DOI | MR | JFM

[11] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92. AMS, Providence (2008). | DOI | MR | JFM

[12] Ma, X., Kelarev, A., Lin, Y., Wang, K.: A survey on enhanced power graphs of finite groups. Electron. J. Graph Theory Appl. 10 (2022), 89-111. | DOI | MR | JFM

[13] Ma, X., She, Y.: The metric dimension of the enhanced power graph of a finite group. J. Algebra Appl. 19 (2020), Article ID 2050020, 14 pages. | DOI | MR | JFM

[14] Mahmoudifar, A., Babai, A.: On the structure of finite groups with dominatable enhanced power graph. J. Algebra Appl. 21 (2022), Article ID 2250176, 8 pages. | DOI | MR | JFM

[15] O'Bryant, K., Patrick, D., Smithline, L., Wepsic, E.: Some facts about cycels and tidy groups. Mathematical Sciences Technical Reports (MSTR) 131 (1992), 8 pages Available at \brokenlink { https://scholar.rose-hulman.edu/math_mstr/131}\kern0pt

[16] Suzuki, M.: Group Theory. Volume 2. Grundlehren der Mathematischen Wissenschaften 248. Springer, New York (1986). | MR | JFM

[17] Puttkamer, T. W. von: On the Finiteness of the Classifying Space for Virtually Cyclic Subgroups: Dissertation. Rheinischen Friedrich-Wilhelms-Universität, Bonn (2018), Available at https://core.ac.uk/download/pdf/322960861.pdf\kern0pt | MR

Cité par Sources :