Keywords: enhanced power graph; universal vertex; diameter
@article{10_21136_CMJ_2024_0065_24,
author = {Costanzo, David G. and Lewis, Mark L. and Schmidt, Stefano and Tsegaye, Eyob and Udell, Gabe},
title = {Characterizing finite groups whose enhanced power graphs have universal vertices},
journal = {Czechoslovak Mathematical Journal},
pages = {637--645},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0065-24},
mrnumber = {4764545},
zbl = {07893404},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/}
}
TY - JOUR AU - Costanzo, David G. AU - Lewis, Mark L. AU - Schmidt, Stefano AU - Tsegaye, Eyob AU - Udell, Gabe TI - Characterizing finite groups whose enhanced power graphs have universal vertices JO - Czechoslovak Mathematical Journal PY - 2024 SP - 637 EP - 645 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/ DO - 10.21136/CMJ.2024.0065-24 LA - en ID - 10_21136_CMJ_2024_0065_24 ER -
%0 Journal Article %A Costanzo, David G. %A Lewis, Mark L. %A Schmidt, Stefano %A Tsegaye, Eyob %A Udell, Gabe %T Characterizing finite groups whose enhanced power graphs have universal vertices %J Czechoslovak Mathematical Journal %D 2024 %P 637-645 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/ %R 10.21136/CMJ.2024.0065-24 %G en %F 10_21136_CMJ_2024_0065_24
Costanzo, David G.; Lewis, Mark L.; Schmidt, Stefano; Tsegaye, Eyob; Udell, Gabe. Characterizing finite groups whose enhanced power graphs have universal vertices. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 637-645. doi: 10.21136/CMJ.2024.0065-24
[1] Aalipour, G., Akbari, S., Cameron, P. J., Nikandish, R., Shaveisi, F.: On the structure of the power graph and the enhanced power graph of a group. Electron. J. Comb. 24 (2017), Article ID P3.16, 18 pages \99999DOI99999 10.37236/6497 . | MR | JFM
[2] Abdollahi, A., Hassanabadi, A. Mohammadi: Noncyclic graph of a group. Commun. Algebra 35 (2007), 2057-2081. | DOI | MR | JFM
[3] Bera, S., Bhuniya, A. K.: On enhanced power graphs of finite groups. J. Algebra Appl. 17 (2018), Article ID 1850146, 8 pages. | DOI | MR | JFM
[4] Bera, S., Dey, H. K.: On the proper enhanced power graphs of finite nilpotent groups. J. Group Theory 25 (2022), 1109-1131. | DOI | MR | JFM
[5] Bera, S., Dey, H. K., Mukherjee, S. K.: On the connectivity of enhanced power graphs of finite groups. Graphs Comb. 37 (2021), 591-603. | DOI | MR | JFM
[6] Berkovich, Y.: Groups of Prime Power Order. Volume 1. de Gruyter Expositions in Mathematics 46. Walter De Gruyter, Berlin (2008). | DOI | MR | JFM
[7] Cameron, P. J.: Graphs defined on groups. Int. J. Group Theory 11 (2022), 53-107. | DOI | MR | JFM
[8] Costanzo, D. G., Lewis, M. L., Schmidt, S., Tsegaye, E., Udell, G.: The cyclic graph of a $Z$-group. Bull. Aust. Math. Soc. 104 (2021), 295-301. | DOI | MR | JFM
[9] Imperatore, D.: On a graph associated with a group. Ischia Group Theory 2008 World Scientific, Hackensack (2009), 100-115. | DOI | MR | JFM
[10] Imperatore, D., Lewis, M. L.: A condition in finite solvable groups related to cyclic subgroups. Bull. Aust. Math. Soc. 83 (2011), 267-272. | DOI | MR | JFM
[11] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92. AMS, Providence (2008). | DOI | MR | JFM
[12] Ma, X., Kelarev, A., Lin, Y., Wang, K.: A survey on enhanced power graphs of finite groups. Electron. J. Graph Theory Appl. 10 (2022), 89-111. | DOI | MR | JFM
[13] Ma, X., She, Y.: The metric dimension of the enhanced power graph of a finite group. J. Algebra Appl. 19 (2020), Article ID 2050020, 14 pages. | DOI | MR | JFM
[14] Mahmoudifar, A., Babai, A.: On the structure of finite groups with dominatable enhanced power graph. J. Algebra Appl. 21 (2022), Article ID 2250176, 8 pages. | DOI | MR | JFM
[15] O'Bryant, K., Patrick, D., Smithline, L., Wepsic, E.: Some facts about cycels and tidy groups. Mathematical Sciences Technical Reports (MSTR) 131 (1992), 8 pages Available at \brokenlink { https://scholar.rose-hulman.edu/math_mstr/131}\kern0pt
[16] Suzuki, M.: Group Theory. Volume 2. Grundlehren der Mathematischen Wissenschaften 248. Springer, New York (1986). | MR | JFM
[17] Puttkamer, T. W. von: On the Finiteness of the Classifying Space for Virtually Cyclic Subgroups: Dissertation. Rheinischen Friedrich-Wilhelms-Universität, Bonn (2018), Available at https://core.ac.uk/download/pdf/322960861.pdf\kern0pt | MR
Cité par Sources :