Characterizing finite groups whose enhanced power graphs have universal vertices
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 637-645
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \{1\}$ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.
Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \{1\}$ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.
DOI :
10.21136/CMJ.2024.0065-24
Classification :
05C25, 20D25
Keywords: enhanced power graph; universal vertex; diameter
Keywords: enhanced power graph; universal vertex; diameter
@article{10_21136_CMJ_2024_0065_24,
author = {Costanzo, David G. and Lewis, Mark L. and Schmidt, Stefano and Tsegaye, Eyob and Udell, Gabe},
title = {Characterizing finite groups whose enhanced power graphs have universal vertices},
journal = {Czechoslovak Mathematical Journal},
pages = {637--645},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0065-24},
mrnumber = {4764545},
zbl = {07893404},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/}
}
TY - JOUR AU - Costanzo, David G. AU - Lewis, Mark L. AU - Schmidt, Stefano AU - Tsegaye, Eyob AU - Udell, Gabe TI - Characterizing finite groups whose enhanced power graphs have universal vertices JO - Czechoslovak Mathematical Journal PY - 2024 SP - 637 EP - 645 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/ DO - 10.21136/CMJ.2024.0065-24 LA - en ID - 10_21136_CMJ_2024_0065_24 ER -
%0 Journal Article %A Costanzo, David G. %A Lewis, Mark L. %A Schmidt, Stefano %A Tsegaye, Eyob %A Udell, Gabe %T Characterizing finite groups whose enhanced power graphs have universal vertices %J Czechoslovak Mathematical Journal %D 2024 %P 637-645 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/ %R 10.21136/CMJ.2024.0065-24 %G en %F 10_21136_CMJ_2024_0065_24
Costanzo, David G.; Lewis, Mark L.; Schmidt, Stefano; Tsegaye, Eyob; Udell, Gabe. Characterizing finite groups whose enhanced power graphs have universal vertices. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 637-645. doi: 10.21136/CMJ.2024.0065-24
Cité par Sources :