Characterizing finite groups whose enhanced power graphs have universal vertices
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 637-645 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \{1\}$ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.
Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \{1\}$ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2.
DOI : 10.21136/CMJ.2024.0065-24
Classification : 05C25, 20D25
Keywords: enhanced power graph; universal vertex; diameter
@article{10_21136_CMJ_2024_0065_24,
     author = {Costanzo, David G. and Lewis, Mark L. and Schmidt, Stefano and Tsegaye, Eyob and Udell, Gabe},
     title = {Characterizing finite groups whose enhanced power graphs have universal vertices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {637--645},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0065-24},
     mrnumber = {4764545},
     zbl = {07893404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/}
}
TY  - JOUR
AU  - Costanzo, David G.
AU  - Lewis, Mark L.
AU  - Schmidt, Stefano
AU  - Tsegaye, Eyob
AU  - Udell, Gabe
TI  - Characterizing finite groups whose enhanced power graphs have universal vertices
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 637
EP  - 645
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/
DO  - 10.21136/CMJ.2024.0065-24
LA  - en
ID  - 10_21136_CMJ_2024_0065_24
ER  - 
%0 Journal Article
%A Costanzo, David G.
%A Lewis, Mark L.
%A Schmidt, Stefano
%A Tsegaye, Eyob
%A Udell, Gabe
%T Characterizing finite groups whose enhanced power graphs have universal vertices
%J Czechoslovak Mathematical Journal
%D 2024
%P 637-645
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-24/
%R 10.21136/CMJ.2024.0065-24
%G en
%F 10_21136_CMJ_2024_0065_24
Costanzo, David G.; Lewis, Mark L.; Schmidt, Stefano; Tsegaye, Eyob; Udell, Gabe. Characterizing finite groups whose enhanced power graphs have universal vertices. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 637-645. doi: 10.21136/CMJ.2024.0065-24

Cité par Sources :