Keywords: planar graph; vertex-arboricity; forest; vertex partition
@article{10_21136_CMJ_2024_0065_23,
author = {Wang, Yang and Wang, Weifan and Kong, Jiangxu and Wang, Yiqiao},
title = {Partitioning a planar graph without chordal 5-cycles into two forests},
journal = {Czechoslovak Mathematical Journal},
pages = {377--388},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0065-23},
mrnumber = {4764528},
zbl = {07893387},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-23/}
}
TY - JOUR AU - Wang, Yang AU - Wang, Weifan AU - Kong, Jiangxu AU - Wang, Yiqiao TI - Partitioning a planar graph without chordal 5-cycles into two forests JO - Czechoslovak Mathematical Journal PY - 2024 SP - 377 EP - 388 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-23/ DO - 10.21136/CMJ.2024.0065-23 LA - en ID - 10_21136_CMJ_2024_0065_23 ER -
%0 Journal Article %A Wang, Yang %A Wang, Weifan %A Kong, Jiangxu %A Wang, Yiqiao %T Partitioning a planar graph without chordal 5-cycles into two forests %J Czechoslovak Mathematical Journal %D 2024 %P 377-388 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0065-23/ %R 10.21136/CMJ.2024.0065-23 %G en %F 10_21136_CMJ_2024_0065_23
Wang, Yang; Wang, Weifan; Kong, Jiangxu; Wang, Yiqiao. Partitioning a planar graph without chordal 5-cycles into two forests. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 377-388. doi: 10.21136/CMJ.2024.0065-23
[1] Borodin, O. V., Ivanova, A. O.: Planar graphs without 4-cycles adjacent to 3-cycles are list vertex 2-arborable. J. Graph Theory 62 (2009), 234-240. | DOI | MR | JFM
[2] Chartrand, G., Kronk, H. V.: The point-arboricity of planar graphs. J. Lond. Math. Soc. 44 (1969), 612-616. | DOI | MR | JFM
[3] Chartrand, G., Kronk, H. V., Wall, C. E.: The point-arboricity of a graph. Isr. J. Math. 6 (1968), 169-175. | DOI | MR | JFM
[4] Chen, M., Raspaud, A., Wang, W.: Vertex-arboricity of planar graphs without intersecting triangles. Eur. J. Comb. 33 (2012), 905-923. | DOI | MR | JFM
[5] Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979). | MR | JFM
[6] Hakimi, S. L., Schmeichel, E. F.: A note on the vertex arboricity of a graph. SIAM J. Discrete Math. 2 (1989), 64-67. | DOI | MR | JFM
[7] Huang, D., Shiu, W. C., Wang, W.: On the vertex-arboricity of planar graphs without 7-cycles. Discrete Math. 312 (2012), 2304-2315. | DOI | MR | JFM
[8] Huang, D., Wang, W.: Vertex arboricity of planar graphs without chordal 6-cycles. Int. J. Comput. Math. 90 (2013), 258-272. | DOI | MR | JFM
[9] Raspaud, A., Wang, W.: On the vertex-arboricity of planar graphs. Eur. J. Comb. 29 (2008), 1064-1075. | DOI | MR | JFM
[10] Stein, S. K.: $B$-sets and planar maps. Pac. J. Math. 37 (1971), 217-224. | DOI | MR | JFM
[11] Wang, Y., Wang, Y., Lih, K.-W.: Partitioning kite-free planar graphs into two forests. J. Graph Theory 106 (2024), 30-56. | DOI | MR | JFM
Cité par Sources :