A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 623-636
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $j\geq 2$ be a given integer. Let $H_{k}^{*}$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\geq 2$ for the full modulo group ${\rm SL}(2,\mathbb {Z})$. For $f\in H_{k}^{*}$, denote by $\lambda _{{\rm sym}^{j}f}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, {\rm sym}^{j}f)$) attached to $f$. We are interested in the average behaviour of the sum $$ \sum _{n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x \atop (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{ 6}} \lambda _{{\rm sym}^{j}f}^{2}(n), $$ where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).
Let $j\geq 2$ be a given integer. Let $H_{k}^{*}$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\geq 2$ for the full modulo group ${\rm SL}(2,\mathbb {Z})$. For $f\in H_{k}^{*}$, denote by $\lambda _{{\rm sym}^{j}f}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, {\rm sym}^{j}f)$) attached to $f$. We are interested in the average behaviour of the sum $$ \sum _{n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x \atop (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{ 6}} \lambda _{{\rm sym}^{j}f}^{2}(n), $$ where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).
DOI : 10.21136/CMJ.2024.0038-24
Classification : 11F11, 11F30, 11F66
Keywords: cusp form; Fourier coefficient; symmetric power $L$-function
@article{10_21136_CMJ_2024_0038_24,
     author = {Wang, Youjun},
     title = {A note on average behaviour of the {Fourier} coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {623--636},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0038-24},
     mrnumber = {4764544},
     zbl = {07893403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0038-24/}
}
TY  - JOUR
AU  - Wang, Youjun
TI  - A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 623
EP  - 636
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0038-24/
DO  - 10.21136/CMJ.2024.0038-24
LA  - en
ID  - 10_21136_CMJ_2024_0038_24
ER  - 
%0 Journal Article
%A Wang, Youjun
%T A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers
%J Czechoslovak Mathematical Journal
%D 2024
%P 623-636
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0038-24/
%R 10.21136/CMJ.2024.0038-24
%G en
%F 10_21136_CMJ_2024_0038_24
Wang, Youjun. A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 623-636. doi: 10.21136/CMJ.2024.0038-24

[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. | DOI | MR | JFM

[2] Deligne, P.: La conjecture de Weil. I. Usp. Mat. Nauk 30 (1975), 159-190 Russian. | MR | JFM

[3] Fomenko, O. M.: Identities involving the coefficients of automorphic $L$-functions. Zap. Nauchn. Semin. POMI 314 (2004), 247-256 Russian. | DOI | MR | JFM

[4] Fomenko, O. M.: Mean value theorems for automorphic $L$-functions. Algebra Anal. 19 (2007), 246-264 Russian. | DOI | MR | JFM

[5] Good, A.: The square mean of Dirichlet series associated with cusp forms. Mathematika 29 (1982), 278-295. | DOI | MR | JFM

[6] Hua, G.: The average behaviour of Hecke eigenvalues over certain sparse sequence of positive integers. Res. Number Theory 8 (2022), Article ID 95, 20 pages. | DOI | MR | JFM

[7] Huang, J., Liu, H., Zhang, D.: Power moments of automorphic $L$-functions related to Maass forms for SL$_3(\Bbb{Z})$. Open Math. 19 (2021), 1007-1017. | DOI | MR | JFM

[8] Ivić, A.: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. John Wiley & Sons, New York (1985). | MR | JFM

[9] Jiang, Y., Lü, G.: On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms. Acta Arith. 166 (2014), 231-252. | DOI | MR | JFM

[10] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. | DOI | MR | JFM

[11] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL3 $L$-functions. Int. Math. Res. Not. 2023 (2023), 11453-11470. | DOI | MR | JFM

[12] Liu, J., Ye, Y.: Perron's formula and the prime number theorem for automorphic $L$-functions. Pure Appl. Math. Q. 3 (2007), 481-497. | DOI | MR | JFM

[13] Sharma, A., Sankaranarayanan, A.: Discrete mean square of the coefficients of symmetric square $L$-functions on certain sequence of positive numbers. Res. Number Theory 8 (2022), Article ID 19, 13 pages. | DOI | MR | JFM

[14] Sharma, A., Sankaranarayanan, A.: On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers. Czech. Math. J. 73 (2023), 885-901. | DOI | MR | JFM

[15] Tang, H.: Estimates for the Fourier coefficients of symmetric square $L$-functions. Arch. Math. 100 (2013), 123-130. | DOI | MR | JFM

[16] Tang, H., Wu, J.: Fourier coefficients of symmetric power $L$-functions. J. Number Theory 167 (2016), 147-160. | DOI | MR | JFM

[17] Zhai, S.: Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133 (2013), 3862-3876. | DOI | MR | JFM

Cité par Sources :