A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 623-636 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $j\geq 2$ be a given integer. Let $H_{k}^{*}$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\geq 2$ for the full modulo group ${\rm SL}(2,\mathbb {Z})$. For $f\in H_{k}^{*}$, denote by $\lambda _{{\rm sym}^{j}f}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, {\rm sym}^{j}f)$) attached to $f$. We are interested in the average behaviour of the sum $$ \sum _{n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x \atop (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{ 6}} \lambda _{{\rm sym}^{j}f}^{2}(n), $$ where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).
Let $j\geq 2$ be a given integer. Let $H_{k}^{*}$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\geq 2$ for the full modulo group ${\rm SL}(2,\mathbb {Z})$. For $f\in H_{k}^{*}$, denote by $\lambda _{{\rm sym}^{j}f}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, {\rm sym}^{j}f)$) attached to $f$. We are interested in the average behaviour of the sum $$ \sum _{n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x \atop (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{ 6}} \lambda _{{\rm sym}^{j}f}^{2}(n), $$ where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).
DOI : 10.21136/CMJ.2024.0038-24
Classification : 11F11, 11F30, 11F66
Keywords: cusp form; Fourier coefficient; symmetric power $L$-function
@article{10_21136_CMJ_2024_0038_24,
     author = {Wang, Youjun},
     title = {A note on average behaviour of the {Fourier} coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {623--636},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0038-24},
     mrnumber = {4764544},
     zbl = {07893403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0038-24/}
}
TY  - JOUR
AU  - Wang, Youjun
TI  - A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 623
EP  - 636
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0038-24/
DO  - 10.21136/CMJ.2024.0038-24
LA  - en
ID  - 10_21136_CMJ_2024_0038_24
ER  - 
%0 Journal Article
%A Wang, Youjun
%T A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers
%J Czechoslovak Mathematical Journal
%D 2024
%P 623-636
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0038-24/
%R 10.21136/CMJ.2024.0038-24
%G en
%F 10_21136_CMJ_2024_0038_24
Wang, Youjun. A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 623-636. doi: 10.21136/CMJ.2024.0038-24

Cité par Sources :