Keywords: cusp form; Fourier coefficient; symmetric power $L$-function
@article{10_21136_CMJ_2024_0038_24,
author = {Wang, Youjun},
title = {A note on average behaviour of the {Fourier} coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers},
journal = {Czechoslovak Mathematical Journal},
pages = {623--636},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0038-24},
mrnumber = {4764544},
zbl = {07893403},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0038-24/}
}
TY - JOUR
AU - Wang, Youjun
TI - A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers
JO - Czechoslovak Mathematical Journal
PY - 2024
SP - 623
EP - 636
VL - 74
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0038-24/
DO - 10.21136/CMJ.2024.0038-24
LA - en
ID - 10_21136_CMJ_2024_0038_24
ER -
%0 Journal Article
%A Wang, Youjun
%T A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers
%J Czechoslovak Mathematical Journal
%D 2024
%P 623-636
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0038-24/
%R 10.21136/CMJ.2024.0038-24
%G en
%F 10_21136_CMJ_2024_0038_24
Wang, Youjun. A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 623-636. doi: 10.21136/CMJ.2024.0038-24
[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. | DOI | MR | JFM
[2] Deligne, P.: La conjecture de Weil. I. Usp. Mat. Nauk 30 (1975), 159-190 Russian. | MR | JFM
[3] Fomenko, O. M.: Identities involving the coefficients of automorphic $L$-functions. Zap. Nauchn. Semin. POMI 314 (2004), 247-256 Russian. | DOI | MR | JFM
[4] Fomenko, O. M.: Mean value theorems for automorphic $L$-functions. Algebra Anal. 19 (2007), 246-264 Russian. | DOI | MR | JFM
[5] Good, A.: The square mean of Dirichlet series associated with cusp forms. Mathematika 29 (1982), 278-295. | DOI | MR | JFM
[6] Hua, G.: The average behaviour of Hecke eigenvalues over certain sparse sequence of positive integers. Res. Number Theory 8 (2022), Article ID 95, 20 pages. | DOI | MR | JFM
[7] Huang, J., Liu, H., Zhang, D.: Power moments of automorphic $L$-functions related to Maass forms for SL$_3(\Bbb{Z})$. Open Math. 19 (2021), 1007-1017. | DOI | MR | JFM
[8] Ivić, A.: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. John Wiley & Sons, New York (1985). | MR | JFM
[9] Jiang, Y., Lü, G.: On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms. Acta Arith. 166 (2014), 231-252. | DOI | MR | JFM
[10] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. | DOI | MR | JFM
[11] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL3 $L$-functions. Int. Math. Res. Not. 2023 (2023), 11453-11470. | DOI | MR | JFM
[12] Liu, J., Ye, Y.: Perron's formula and the prime number theorem for automorphic $L$-functions. Pure Appl. Math. Q. 3 (2007), 481-497. | DOI | MR | JFM
[13] Sharma, A., Sankaranarayanan, A.: Discrete mean square of the coefficients of symmetric square $L$-functions on certain sequence of positive numbers. Res. Number Theory 8 (2022), Article ID 19, 13 pages. | DOI | MR | JFM
[14] Sharma, A., Sankaranarayanan, A.: On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers. Czech. Math. J. 73 (2023), 885-901. | DOI | MR | JFM
[15] Tang, H.: Estimates for the Fourier coefficients of symmetric square $L$-functions. Arch. Math. 100 (2013), 123-130. | DOI | MR | JFM
[16] Tang, H., Wu, J.: Fourier coefficients of symmetric power $L$-functions. J. Number Theory 167 (2016), 147-160. | DOI | MR | JFM
[17] Zhai, S.: Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133 (2013), 3862-3876. | DOI | MR | JFM
Cité par Sources :