Non-weight modules over the super Schrödinger algebra
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 647-664
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct a family of non-weight modules which are free $U(\mathfrak {h})$-modules of rank 2 over the $N=1$ super Schrödinger algebra in $(1+1)$-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free $U(\mathfrak {h})$-modules of rank 2 over $\mathfrak {osp}(1|2)$ are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.
We construct a family of non-weight modules which are free $U(\mathfrak {h})$-modules of rank 2 over the $N=1$ super Schrödinger algebra in $(1+1)$-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free $U(\mathfrak {h})$-modules of rank 2 over $\mathfrak {osp}(1|2)$ are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.
DOI : 10.21136/CMJ.2024.0030-23
Classification : 17B10, 17B20, 17B35, 17B66
Keywords: super Schrödinger algebra; simple module; U($\mathfrak {h}$)-free module, non-weight module
@article{10_21136_CMJ_2024_0030_23,
     author = {Wang, Xinyue and Chen, Liangyun and Ma, Yao},
     title = {Non-weight modules over the super {Schr\"odinger} algebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {647--664},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0030-23},
     mrnumber = {4804951},
     zbl = {07953669},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0030-23/}
}
TY  - JOUR
AU  - Wang, Xinyue
AU  - Chen, Liangyun
AU  - Ma, Yao
TI  - Non-weight modules over the super Schrödinger algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 647
EP  - 664
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0030-23/
DO  - 10.21136/CMJ.2024.0030-23
LA  - en
ID  - 10_21136_CMJ_2024_0030_23
ER  - 
%0 Journal Article
%A Wang, Xinyue
%A Chen, Liangyun
%A Ma, Yao
%T Non-weight modules over the super Schrödinger algebra
%J Czechoslovak Mathematical Journal
%D 2024
%P 647-664
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0030-23/
%R 10.21136/CMJ.2024.0030-23
%G en
%F 10_21136_CMJ_2024_0030_23
Wang, Xinyue; Chen, Liangyun; Ma, Yao. Non-weight modules over the super Schrödinger algebra. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 647-664. doi: 10.21136/CMJ.2024.0030-23

[1] Aizawa, N.: Lowest weight representations of super Schrödinger algebras in low dimensional spacetime. J. Phys., Conf. Ser. 284 (2011), 12007-12016. | DOI | MR

[2] Aizawa, N.: Lowest weight representations of super Schrödinger algebras in one dimensional space. J. Math. Phys. 52 (2011), Article ID 013509, 14 pages. | DOI | MR | JFM

[3] Ballesteros, A., Herranz, F., Parashar, P.: $(1+1)$ Schrödinger Lie bialgebras and their Poisson-Lie groups. J. Phys. A, Math. Gen. 33 (2000), 3445-3465. | DOI | MR | JFM

[4] Barut, A. O., Xu, B.-W.: Conformal covariance and the probability interpretation of wave equations. Phys. Lett. A 82 (1981), 218-220. | DOI | MR

[5] Bavula, V., Oystaeyen, F. van: The simple modules of the Lie superalgebra $osp(1,2)$. J. Pure Appl. Algebra 150 (2000), 41-52. | DOI | MR | JFM

[6] Cai, Y., Gao, Y., Wang, Y.: Simple Harish-Chandra supermodules over the super Schrödinger algebra. Sci. China Math. 58 (2015), 2477-2488. | DOI | MR | JFM

[7] Cai, Y., Tan, H., Zhao, K.: Module structures on $U(\mathcal{h})$ for Kac-Moody algebras. Sci. Sin., Math. 47 (2017), 1491-1514 Chinese. | DOI | JFM

[8] Cai, Y., Tan, H., Zhao, K.: New representations of affine Kac-Moody algebras. J. Algebra 547 (2020), 95-115. | DOI | MR | JFM

[9] Cai, Y., Zhao, K.: Module structure on $\mathcal{U}(H)$ for basic Lie superalgebras. Toyama Math. J. 37 (2015), 55-72. | MR | JFM

[10] Chen, H., Dai, X., Liu, M.: A family of simple non-weight modules over the twisted $N=2$ superconformal algebra. J. Pure Appl. Algebra 226 (2022), Article ID 107030, 14 pages. | DOI | MR | JFM

[11] Chen, H., Guo, X.: A new family of modules over the Virasoro algebra. J. Algebra 457 (2016), 73-105. | DOI | MR | JFM

[12] Chen, H., Guo, X.: Non-weight modules over the Heisenberg-Virasoro and the $W$ algebra $W(2,2)$. J. Algebra Appl. 16 (2017), Article ID 1750097, 16 pages. | DOI | MR | JFM

[13] Chen, H., Wang, L.: A family of simple modules over the Rueda's algebras. J. Algebra 591 (2022), 360-378. | DOI | MR | JFM

[14] Chen, Q., Cai, Y.: Modules over algebras related to the Virasoro algebra. Int. J. Math. 26 (2015), Article ID 1550070, 16 pages. | DOI | MR | JFM

[15] Chen, Q., Han, J.: Non-weight modules over the affine-Virasoro algebra of type $A_1$. J. Math. Phys. 60 (2019), Article ID 071707, 9 pages. | DOI | MR | JFM

[16] Duval, C., Horváthy, P.: On Schrödinger superalgebras. J. Math. Phys. 35 (1994), 2516-2538. | DOI | MR | JFM

[17] Gao, D., Ma, Y., Zhao, K.: Non-weight modules over the mirror Heisenberg-Virasoro algebra. Sci. China, Math. 65 (2022), 2243-2254. | DOI | MR | JFM

[18] Guo, X., Wang, M., Liu, X.: $U(\mathcal{h})$-free modules over the Block algebra $\mathcal{B}(q)$. J. Geom. Phys. 169 (2021), Article ID 104333, 10 pages. | DOI | MR | JFM

[19] Han, J., Chen, Q., Su, Y.: Modules over the algebras $Vir(a,b)$. Linear Algebra Appl. 515 (2017), 11-23. | DOI | MR | JFM

[20] Lu, H., Sun, J., Zhang, H.: $U(\mathcal{h})$-free modules over the topological $N=2$ super-BMS$_3$ algebra. J. Math. Phys. 64 (2023), Article ID 061703, 16 pages. | DOI | MR | JFM

[21] Nakayama, Y.: An index for non-relativistic superconformal field theories. J. High Energy Phys. 2008 (2008), Article ID 083, 13 pages. | DOI | MR | JFM

[22] Niederer, U.: The maximal kinematical invariance group of the free Schrödinger equation. Helv. Phys. Acta 45 (1972), 802-810. | DOI | MR

[23] Nilsson, J.: Simple $sl_{n+1}$-module structures on $U(\mathcal{h})$. J. Algebra 424 (2015), 294-329. | DOI | MR | JFM

[24] Martín, F. J. Plaza, Prieto, C. Tejero: Construction of simple non-weight $\mathcal{sl}$(2)-modules of arbitrary rank. J. Algebra 472 (2017), 172-194. | DOI | MR | JFM

[25] Sakaguchi, M., Yoshida, K.: Super Schrödinger algebra in AdS/CFT. J. Math. Phys. 49 (2008), Article ID 102302, 13 pages. | DOI | MR | JFM

[26] Su, Y., Yue, Q., Zhu, X.: Simple non-weight modules over Lie superalgebras of Block type. Available at , 18 pages. | arXiv | DOI

[27] Tan, H., Zhao, K.: Irreducible modules over Witt algebras $W_{n}$ and over $\mathcal{sl}_{n+1}(\Bbb C)$. Algebr. Represent. Theory 21 (2018), 787-806. | DOI | MR | JFM

[28] Wang, H., Xia, C., Zhang, X.: Non-weight representations of Lie superalgebras of Block type. I. J. Geom. Phys. 186 (2023), Article ID 104775, 12 pages. | DOI | MR | JFM

[29] Wang, H., Xia, C., Zhang, X.: Non-weight representations of Lie superalgebras of Block type. II. J. Geom. Phys. 197 (2024), Article ID 105092, 12 pages. | DOI | MR | JFM

[30] Wang, Y., Zhang, H.: A class of non-weight modules over the Schrödinger-Virasoro algebras. Available at , 16 pages. | arXiv | DOI | MR

[31] Williamson, S.: On a family of non-weight modules over Witt-type Lie algebras and superalgebras. J. Algebra 569 (2021), 180-194. | DOI | MR | JFM

[32] Xie, Q., Sun, J.: Non-weight modules over $N=1$ Lie superalgebras of Block type. Forum Math. 35 (2023), 1279-1300. | DOI | MR | JFM

[33] Xie, Q., Sun, J., Yang, H.: $U(\mathcal{h})$-free modules over the super-Galilean conformal algebras. J. Math. Phys. 63 (2022), Article ID 061701, 21 pages. | DOI | MR | JFM

[34] Yang, H., Yao, Y., Xia, L.: A family of non-weight modules over the super-Virasoro algebras. J. Algebra 547 (2020), 538-555. | DOI | MR | JFM

[35] Yang, H., Yao, Y., Xia, L.: On non-weight representations of the $N=2$ superconformal algebras. J. Pure Appl. Algebra 225 (2021), Article ID 106529, 19 pages. | DOI | MR | JFM

[36] Zhang, X., Cai, Y., Wang, Y.: Simple Harish-Chandra modules over super Schrödinger algebra in $(1+1)$ dimensional spacetime. J. Math. Phys. 55 (2014), Article ID 091701, 13 pages. | DOI | MR | JFM

Cité par Sources :