Keywords: unit disk; polydisc; polynomial; Toeplitz operator; Bergman projection
@article{10_21136_CMJ_2024_0023_24,
author = {\c{C}elik, Mehmet and Duane-Tessier, Luke and Marcial Rodriguez, Ashley and Rodriguez, Daniel and Shaw, Aden},
title = {Area differences under analytic maps and operators},
journal = {Czechoslovak Mathematical Journal},
pages = {817--838},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0023-24},
mrnumber = {4804962},
zbl = {07953680},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0023-24/}
}
TY - JOUR AU - Çelik, Mehmet AU - Duane-Tessier, Luke AU - Marcial Rodriguez, Ashley AU - Rodriguez, Daniel AU - Shaw, Aden TI - Area differences under analytic maps and operators JO - Czechoslovak Mathematical Journal PY - 2024 SP - 817 EP - 838 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0023-24/ DO - 10.21136/CMJ.2024.0023-24 LA - en ID - 10_21136_CMJ_2024_0023_24 ER -
%0 Journal Article %A Çelik, Mehmet %A Duane-Tessier, Luke %A Marcial Rodriguez, Ashley %A Rodriguez, Daniel %A Shaw, Aden %T Area differences under analytic maps and operators %J Czechoslovak Mathematical Journal %D 2024 %P 817-838 %V 74 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0023-24/ %R 10.21136/CMJ.2024.0023-24 %G en %F 10_21136_CMJ_2024_0023_24
Çelik, Mehmet; Duane-Tessier, Luke; Marcial Rodriguez, Ashley; Rodriguez, Daniel; Shaw, Aden. Area differences under analytic maps and operators. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 817-838. doi: 10.21136/CMJ.2024.0023-24
[1] Ahlfors, L.: Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable. AMS Chelsea Publishing 385. AMS, Providence (2021). | MR | JFM
[2] Bambico, H. K., Çelik, M., Gross, S. T., Hall, F.: Generalization of the excess area and its geometric interpretation. New York J. Math. 28 (2022), 1230-1255. | MR | JFM
[3] Bell, S. R.: Biholomorphic mappings and the $\bar \partial$-problem. Ann. Math. (2) 114 (1981), 103-113. | DOI | MR | JFM
[4] Bell, S., Catlin, D.: Boundary regularity of proper holomorphic mappings. Duke Math. J. 49 (1982), 385-396. | DOI | MR | JFM
[5] Boas, H. P.: Holomorphic reproducing kernels in Reinhardt domains. Pac. J. Math. 112 (1984), 273-292. | DOI | MR | JFM
[6] Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics 19. AMS, Providence (2001). | DOI | MR | JFM
[7] Conway, J. B.: Functions of One Complex Variable. Graduate Texts in Mathematics 11. Springer, Berlin (1978). | DOI | MR | JFM
[8] D'Angelo, J. P.: Inequalities from Complex Analysis. The Carus Mathematical Monographs 28. Mathematical Association of America, Washington (2002). | DOI | MR | JFM
[9] D'Angelo, J. P.: Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry. Cornerstones. Springer, Cham (2019). | DOI | MR | JFM
[10] Diederich, K., Fornaess, J. E.: Boundary regularity of proper holomorphic mappings. Invent. Math. 67 (1982), 363-384. | DOI | MR | JFM
[11] Folland, G. B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995). | DOI | MR | JFM
[12] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics. John Wiley & Sons, New York (1999). | MR | JFM
[13] Greene, R. E., Krantz, S. G.: Function Theory of One Complex Variable. Graduate Studies in Mathematics 40. AMS, Providence (2006). | DOI | MR | JFM
[14] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics 199. Springer, Berlin (2000). | DOI | MR | JFM
[15] Hewitt, E., Stromberg, K.: Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable. Graduate Texts in Mathematics 25. Springer, Berlin (1975). | DOI | MR | JFM
[16] Krantz, S. G.: Function Theory of Several Complex Variables. AMS, Providence (2001). | DOI | MR | JFM
[17] Ravisankar, S., Zeytuncu, Y. E.: A note on smoothing properties of the Bergman projection. Int. J. Math. 27 (2016), Article ID 1650087, 10 pages. | DOI | MR | JFM
[18] Straube, E. J.: Exact regularity of Bergman, Szegő and Sobolev space projections in nonpseudoconvex domains. Math. Z. 192 (1986), 117-128. | DOI | MR | JFM
Cité par Sources :