Area differences under analytic maps and operators
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 817-838
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping $h$ and that of $zh$, we study various $L^2$ norms for $T_{\varphi }(h)$, where $T_{\varphi }$ is the Toeplitz operator with symbol $\varphi $. In Theorem \ref {thm:Transitivity}, given polynomials $p$ and $q$ we find a symbol $\varphi $ such that $T_{\varphi }(p)=q$. We extend some of our results to the polydisc.
Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping $h$ and that of $zh$, we study various $L^2$ norms for $T_{\varphi }(h)$, where $T_{\varphi }$ is the Toeplitz operator with symbol $\varphi $. In Theorem \ref {thm:Transitivity}, given polynomials $p$ and $q$ we find a symbol $\varphi $ such that $T_{\varphi }(p)=q$. We extend some of our results to the polydisc.
DOI : 10.21136/CMJ.2024.0023-24
Classification : 30H05, 30J99, 32A36, 47B35
Keywords: unit disk; polydisc; polynomial; Toeplitz operator; Bergman projection
@article{10_21136_CMJ_2024_0023_24,
     author = {\c{C}elik, Mehmet and Duane-Tessier, Luke and Marcial Rodriguez, Ashley and Rodriguez, Daniel and Shaw, Aden},
     title = {Area differences under analytic maps and operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {817--838},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0023-24},
     mrnumber = {4804962},
     zbl = {07953680},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0023-24/}
}
TY  - JOUR
AU  - Çelik, Mehmet
AU  - Duane-Tessier, Luke
AU  - Marcial Rodriguez, Ashley
AU  - Rodriguez, Daniel
AU  - Shaw, Aden
TI  - Area differences under analytic maps and operators
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 817
EP  - 838
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0023-24/
DO  - 10.21136/CMJ.2024.0023-24
LA  - en
ID  - 10_21136_CMJ_2024_0023_24
ER  - 
%0 Journal Article
%A Çelik, Mehmet
%A Duane-Tessier, Luke
%A Marcial Rodriguez, Ashley
%A Rodriguez, Daniel
%A Shaw, Aden
%T Area differences under analytic maps and operators
%J Czechoslovak Mathematical Journal
%D 2024
%P 817-838
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0023-24/
%R 10.21136/CMJ.2024.0023-24
%G en
%F 10_21136_CMJ_2024_0023_24
Çelik, Mehmet; Duane-Tessier, Luke; Marcial Rodriguez, Ashley; Rodriguez, Daniel; Shaw, Aden. Area differences under analytic maps and operators. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 817-838. doi: 10.21136/CMJ.2024.0023-24

[1] Ahlfors, L.: Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable. AMS Chelsea Publishing 385. AMS, Providence (2021). | MR | JFM

[2] Bambico, H. K., Çelik, M., Gross, S. T., Hall, F.: Generalization of the excess area and its geometric interpretation. New York J. Math. 28 (2022), 1230-1255. | MR | JFM

[3] Bell, S. R.: Biholomorphic mappings and the $\bar \partial$-problem. Ann. Math. (2) 114 (1981), 103-113. | DOI | MR | JFM

[4] Bell, S., Catlin, D.: Boundary regularity of proper holomorphic mappings. Duke Math. J. 49 (1982), 385-396. | DOI | MR | JFM

[5] Boas, H. P.: Holomorphic reproducing kernels in Reinhardt domains. Pac. J. Math. 112 (1984), 273-292. | DOI | MR | JFM

[6] Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics 19. AMS, Providence (2001). | DOI | MR | JFM

[7] Conway, J. B.: Functions of One Complex Variable. Graduate Texts in Mathematics 11. Springer, Berlin (1978). | DOI | MR | JFM

[8] D'Angelo, J. P.: Inequalities from Complex Analysis. The Carus Mathematical Monographs 28. Mathematical Association of America, Washington (2002). | DOI | MR | JFM

[9] D'Angelo, J. P.: Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry. Cornerstones. Springer, Cham (2019). | DOI | MR | JFM

[10] Diederich, K., Fornaess, J. E.: Boundary regularity of proper holomorphic mappings. Invent. Math. 67 (1982), 363-384. | DOI | MR | JFM

[11] Folland, G. B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995). | DOI | MR | JFM

[12] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics. John Wiley & Sons, New York (1999). | MR | JFM

[13] Greene, R. E., Krantz, S. G.: Function Theory of One Complex Variable. Graduate Studies in Mathematics 40. AMS, Providence (2006). | DOI | MR | JFM

[14] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics 199. Springer, Berlin (2000). | DOI | MR | JFM

[15] Hewitt, E., Stromberg, K.: Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable. Graduate Texts in Mathematics 25. Springer, Berlin (1975). | DOI | MR | JFM

[16] Krantz, S. G.: Function Theory of Several Complex Variables. AMS, Providence (2001). | DOI | MR | JFM

[17] Ravisankar, S., Zeytuncu, Y. E.: A note on smoothing properties of the Bergman projection. Int. J. Math. 27 (2016), Article ID 1650087, 10 pages. | DOI | MR | JFM

[18] Straube, E. J.: Exact regularity of Bergman, Szegő and Sobolev space projections in nonpseudoconvex domains. Math. Z. 192 (1986), 117-128. | DOI | MR | JFM

Cité par Sources :