Images of locally nilpotent derivations of bivariate polynomial algebras over a domain
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 599-610
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let $R$ be a domain containing a field of characteristic zero. We prove that, when $R$ is a one-dimensional unique factorization domain, the image of any locally nilpotent $R$-derivation of the bivariate polynomial algebra $R[x,y]$ is a Mathieu-Zhao subspace. Moreover, we prove that, when $R$ is a Dedekind domain, the image of a locally nilpotent $R$-derivation of $R[x,y]$ with some additional conditions is a Mathieu-Zhao subspace.
We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let $R$ be a domain containing a field of characteristic zero. We prove that, when $R$ is a one-dimensional unique factorization domain, the image of any locally nilpotent $R$-derivation of the bivariate polynomial algebra $R[x,y]$ is a Mathieu-Zhao subspace. Moreover, we prove that, when $R$ is a Dedekind domain, the image of a locally nilpotent $R$-derivation of $R[x,y]$ with some additional conditions is a Mathieu-Zhao subspace.
DOI :
10.21136/CMJ.2024.0008-24
Classification :
13N15, 14R10
Keywords: locally nilpotent derivation; Jacobian conjecture; LND conjecture; Mathieu-Zhao subspace
Keywords: locally nilpotent derivation; Jacobian conjecture; LND conjecture; Mathieu-Zhao subspace
@article{10_21136_CMJ_2024_0008_24,
author = {Sun, Xiaosong and Wang, Beini},
title = {Images of locally nilpotent derivations of bivariate polynomial algebras over a domain},
journal = {Czechoslovak Mathematical Journal},
pages = {599--610},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0008-24},
mrnumber = {4764542},
zbl = {07893401},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0008-24/}
}
TY - JOUR AU - Sun, Xiaosong AU - Wang, Beini TI - Images of locally nilpotent derivations of bivariate polynomial algebras over a domain JO - Czechoslovak Mathematical Journal PY - 2024 SP - 599 EP - 610 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0008-24/ DO - 10.21136/CMJ.2024.0008-24 LA - en ID - 10_21136_CMJ_2024_0008_24 ER -
%0 Journal Article %A Sun, Xiaosong %A Wang, Beini %T Images of locally nilpotent derivations of bivariate polynomial algebras over a domain %J Czechoslovak Mathematical Journal %D 2024 %P 599-610 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0008-24/ %R 10.21136/CMJ.2024.0008-24 %G en %F 10_21136_CMJ_2024_0008_24
Sun, Xiaosong; Wang, Beini. Images of locally nilpotent derivations of bivariate polynomial algebras over a domain. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 599-610. doi: 10.21136/CMJ.2024.0008-24
Cité par Sources :