Images of locally nilpotent derivations of bivariate polynomial algebras over a domain
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 599-610 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let $R$ be a domain containing a field of characteristic zero. We prove that, when $R$ is a one-dimensional unique factorization domain, the image of any locally nilpotent $R$-derivation of the bivariate polynomial algebra $R[x,y]$ is a Mathieu-Zhao subspace. Moreover, we prove that, when $R$ is a Dedekind domain, the image of a locally nilpotent $R$-derivation of $R[x,y]$ with some additional conditions is a Mathieu-Zhao subspace.
We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let $R$ be a domain containing a field of characteristic zero. We prove that, when $R$ is a one-dimensional unique factorization domain, the image of any locally nilpotent $R$-derivation of the bivariate polynomial algebra $R[x,y]$ is a Mathieu-Zhao subspace. Moreover, we prove that, when $R$ is a Dedekind domain, the image of a locally nilpotent $R$-derivation of $R[x,y]$ with some additional conditions is a Mathieu-Zhao subspace.
DOI : 10.21136/CMJ.2024.0008-24
Classification : 13N15, 14R10
Keywords: locally nilpotent derivation; Jacobian conjecture; LND conjecture; Mathieu-Zhao subspace
@article{10_21136_CMJ_2024_0008_24,
     author = {Sun, Xiaosong and Wang, Beini},
     title = {Images of locally nilpotent derivations of bivariate polynomial algebras over a domain},
     journal = {Czechoslovak Mathematical Journal},
     pages = {599--610},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0008-24},
     mrnumber = {4764542},
     zbl = {07893401},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0008-24/}
}
TY  - JOUR
AU  - Sun, Xiaosong
AU  - Wang, Beini
TI  - Images of locally nilpotent derivations of bivariate polynomial algebras over a domain
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 599
EP  - 610
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0008-24/
DO  - 10.21136/CMJ.2024.0008-24
LA  - en
ID  - 10_21136_CMJ_2024_0008_24
ER  - 
%0 Journal Article
%A Sun, Xiaosong
%A Wang, Beini
%T Images of locally nilpotent derivations of bivariate polynomial algebras over a domain
%J Czechoslovak Mathematical Journal
%D 2024
%P 599-610
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0008-24/
%R 10.21136/CMJ.2024.0008-24
%G en
%F 10_21136_CMJ_2024_0008_24
Sun, Xiaosong; Wang, Beini. Images of locally nilpotent derivations of bivariate polynomial algebras over a domain. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 599-610. doi: 10.21136/CMJ.2024.0008-24

Cité par Sources :