Images of locally nilpotent derivations of bivariate polynomial algebras over a domain
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 599-610
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let $R$ be a domain containing a field of characteristic zero. We prove that, when $R$ is a one-dimensional unique factorization domain, the image of any locally nilpotent $R$-derivation of the bivariate polynomial algebra $R[x,y]$ is a Mathieu-Zhao subspace. Moreover, we prove that, when $R$ is a Dedekind domain, the image of a locally nilpotent $R$-derivation of $R[x,y]$ with some additional conditions is a Mathieu-Zhao subspace.
We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let $R$ be a domain containing a field of characteristic zero. We prove that, when $R$ is a one-dimensional unique factorization domain, the image of any locally nilpotent $R$-derivation of the bivariate polynomial algebra $R[x,y]$ is a Mathieu-Zhao subspace. Moreover, we prove that, when $R$ is a Dedekind domain, the image of a locally nilpotent $R$-derivation of $R[x,y]$ with some additional conditions is a Mathieu-Zhao subspace.
DOI : 10.21136/CMJ.2024.0008-24
Classification : 13N15, 14R10
Keywords: locally nilpotent derivation; Jacobian conjecture; LND conjecture; Mathieu-Zhao subspace
@article{10_21136_CMJ_2024_0008_24,
     author = {Sun, Xiaosong and Wang, Beini},
     title = {Images of locally nilpotent derivations of bivariate polynomial algebras over a domain},
     journal = {Czechoslovak Mathematical Journal},
     pages = {599--610},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0008-24},
     mrnumber = {4764542},
     zbl = {07893401},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0008-24/}
}
TY  - JOUR
AU  - Sun, Xiaosong
AU  - Wang, Beini
TI  - Images of locally nilpotent derivations of bivariate polynomial algebras over a domain
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 599
EP  - 610
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0008-24/
DO  - 10.21136/CMJ.2024.0008-24
LA  - en
ID  - 10_21136_CMJ_2024_0008_24
ER  - 
%0 Journal Article
%A Sun, Xiaosong
%A Wang, Beini
%T Images of locally nilpotent derivations of bivariate polynomial algebras over a domain
%J Czechoslovak Mathematical Journal
%D 2024
%P 599-610
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0008-24/
%R 10.21136/CMJ.2024.0008-24
%G en
%F 10_21136_CMJ_2024_0008_24
Sun, Xiaosong; Wang, Beini. Images of locally nilpotent derivations of bivariate polynomial algebras over a domain. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 599-610. doi: 10.21136/CMJ.2024.0008-24

[1] Adjamagbo, P. K., Essen, A. van den: A proof of the equivalence of the Dixmier, Jacobian and Poisson conjectures. Acta Math. Vietnam. 32 (2007), 205-214. | MR | JFM

[2] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969). | DOI | MR | JFM

[3] Bass, H., Connel, E. H., Wright, D.: The Jacobian conjecture: Reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc., New Ser. 7 (1982), 287-330. | DOI | MR | JFM

[4] Belov-Kanel, A., Kontsevich, M.: The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Mosc. Math. J. 7 (2007), 209-218. | DOI | MR | JFM

[5] Bhatwadekar, S., Dutta, A. K.: Kernel of locally nilpotent $R$-derivations of $R[X,Y]$. Trans. Am. Math. Soc. 349 (1997), 3303-3319. | DOI | MR | JFM

[6] Francoise, J. P., Pakovich, F., Yomdin, Y., Zhao, W.: Moment vanishing problem and positivity: Some examples. Bull. Sci. Math. 135 (2011), 10-32. | DOI | MR | JFM

[7] Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Springer, Berlin (2017). | DOI | MR | JFM

[8] Liu, D., Sun, X.: The factorial conjecture and images of locally nilpotent derivations. Bull. Aust. Math. Soc. 101 (2020), 71-79. | DOI | MR | JFM

[9] Mathieu, O.: Some conjectures about invariant theory and their applications. Algèbre noncommutative, groupes quantiques et invariants Séminaires et Congrès 2. Société Mathématique de France, Paris (1997), 263-279. | MR | JFM

[10] Shestakov, I. P., Umirbaev, U. U.: Poisson brackets and two-generated subalgebras of rings of polynomials. J. Am. Math. Soc. 17 (2004), 181-196. | DOI | MR | JFM

[11] Sun, X.: Images of derivations of polynomial algebras with divergence zero. J. Algebra 492 (2017), 414-418. | DOI | MR | JFM

[12] Sun, X., Liu, D.: Images of locally nilpotent derivations of polynomial algebras in three variables. J. Algebra 569 (2021), 401-415. | DOI | MR | JFM

[13] Sun, X., Wang, B.: On the LND conjecture. Bull. Aust. Math. Soc. 108 (2023), 412-421. | DOI | MR | JFM

[14] Tsuchimoto, Y.: Endomorphisms of Weyl algebra and $p$-curvatures. Osaka J. Math. 42 (2005), 435-452. | MR | JFM

[15] Essen, A. van den: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics 190. Birkhäuser, Basel (2000). | DOI | MR | JFM

[16] Essen, A. van den, Sun, X.: Monomial preserving derivations and Mathieu-Zhao subspaces. J. Pure Appl. Algebra 222 (2018), 3219-3223. | DOI | MR | JFM

[17] Essen, A. van den, Willems, R., Zhao, W.: Some results on the vanishing conjecture of differential operators with constant coefficients. J. Pure Appl. Algebra 219 (2015), 3847-3861. | DOI | MR | JFM

[18] Essen, A. van den, Wright, D., Zhao, W.: Images of locally finite derivations of polynomial algebras in two variables. J. Pure Appl. Algebra 215 (2011), 2130-2134. | DOI | MR | JFM

[19] Essen, A. van den, Wright, D., Zhao, W.: On the image conjecture. J. Algebra 340 (2011), 211-224. | DOI | MR | JFM

[20] Wright, D.: The Jacobian conjecture as a problem in combinatorics. Affine Algebraic Geometry Osaka University Press, Osaka (2007), 483-503. | MR | JFM

[21] Zhao, W.: Generalization of the image conjecture and the Mathieu conjecture. J. Pure Appl. Algebra 214 (2010), 1200-1216. | DOI | MR | JFM

[22] Zhao, W.: Images of commuting differential operators of order one with constant leading coefficients. J. Algebra 324 (2010), 231-247. | DOI | MR | JFM

[23] Zhao, W.: Mathieu subspaces of associative algebras. J. Algebra 350 (2012), 245-272. | DOI | MR | JFM

[24] Zhao, W.: Some open problems on locally finite or locally nilpotent derivations and $\Cal{E}$-derivations. Commun. Contemp. Math. 20 (2018), Article ID 1750056, 25 pages. | DOI | MR | JFM

Cité par Sources :