On linear maps leaving invariant the copositive/completely positive cones
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 801-815
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices $\mathcal {S}^n$ that leave invariant the closed convex cones of copositive and completely positive matrices (${\rm COP}_n$ and ${\rm CP}_n$). A description of an invertible linear map on $\mathcal {S}^n$ such that $L({\rm CP}_n) \subset CP_n$ is obtained in terms of semipositive maps over the positive semidefinite cone $\mathcal {S}^n_+$ and the cone of symmetric nonnegative matrices $\mathcal {N}^n_+$ for $n \leq 4$, with specific calculations for $n=2$. Preserver properties of the Lyapunov map $X \mapsto AX + XA^t$, the generalized Lyapunov map $X \mapsto AXB + B^tXA^t$, and the structure of the dual of the cone $\pi ({\rm CP} _n)$ (for $n \leq 4$) are brought out. We also highlight a different way to determine the structure of an invertible linear map on $\mathcal {S}^2$ that leaves invariant the closed convex cone $\mathcal {S}^2_+$.
The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices $\mathcal {S}^n$ that leave invariant the closed convex cones of copositive and completely positive matrices (${\rm COP}_n$ and ${\rm CP}_n$). A description of an invertible linear map on $\mathcal {S}^n$ such that $L({\rm CP}_n) \subset CP_n$ is obtained in terms of semipositive maps over the positive semidefinite cone $\mathcal {S}^n_+$ and the cone of symmetric nonnegative matrices $\mathcal {N}^n_+$ for $n \leq 4$, with specific calculations for $n=2$. Preserver properties of the Lyapunov map $X \mapsto AX + XA^t$, the generalized Lyapunov map $X \mapsto AXB + B^tXA^t$, and the structure of the dual of the cone $\pi ({\rm CP} _n)$ (for $n \leq 4$) are brought out. We also highlight a different way to determine the structure of an invertible linear map on $\mathcal {S}^2$ that leaves invariant the closed convex cone $\mathcal {S}^2_+$.
DOI :
10.21136/CMJ.2024.0002-24
Classification :
15A86, 15B48
Keywords: completely positive/copositive matrix; proper cone; semipositive matrix; positive semidefinite matrix; linear preserver problem
Keywords: completely positive/copositive matrix; proper cone; semipositive matrix; positive semidefinite matrix; linear preserver problem
@article{10_21136_CMJ_2024_0002_24,
author = {Jayaraman, Sachindranath and Mer, Vatsalkumar N.},
title = {On linear maps leaving invariant the copositive/completely positive cones},
journal = {Czechoslovak Mathematical Journal},
pages = {801--815},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0002-24},
mrnumber = {4804961},
zbl = {07953679},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0002-24/}
}
TY - JOUR AU - Jayaraman, Sachindranath AU - Mer, Vatsalkumar N. TI - On linear maps leaving invariant the copositive/completely positive cones JO - Czechoslovak Mathematical Journal PY - 2024 SP - 801 EP - 815 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0002-24/ DO - 10.21136/CMJ.2024.0002-24 LA - en ID - 10_21136_CMJ_2024_0002_24 ER -
%0 Journal Article %A Jayaraman, Sachindranath %A Mer, Vatsalkumar N. %T On linear maps leaving invariant the copositive/completely positive cones %J Czechoslovak Mathematical Journal %D 2024 %P 801-815 %V 74 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0002-24/ %R 10.21136/CMJ.2024.0002-24 %G en %F 10_21136_CMJ_2024_0002_24
Jayaraman, Sachindranath; Mer, Vatsalkumar N. On linear maps leaving invariant the copositive/completely positive cones. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 801-815. doi: 10.21136/CMJ.2024.0002-24
Cité par Sources :