Keywords: completely positive/copositive matrix; proper cone; semipositive matrix; positive semidefinite matrix; linear preserver problem
@article{10_21136_CMJ_2024_0002_24,
author = {Jayaraman, Sachindranath and Mer, Vatsalkumar N.},
title = {On linear maps leaving invariant the copositive/completely positive cones},
journal = {Czechoslovak Mathematical Journal},
pages = {801--815},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0002-24},
mrnumber = {4804961},
zbl = {07953679},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0002-24/}
}
TY - JOUR AU - Jayaraman, Sachindranath AU - Mer, Vatsalkumar N. TI - On linear maps leaving invariant the copositive/completely positive cones JO - Czechoslovak Mathematical Journal PY - 2024 SP - 801 EP - 815 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0002-24/ DO - 10.21136/CMJ.2024.0002-24 LA - en ID - 10_21136_CMJ_2024_0002_24 ER -
%0 Journal Article %A Jayaraman, Sachindranath %A Mer, Vatsalkumar N. %T On linear maps leaving invariant the copositive/completely positive cones %J Czechoslovak Mathematical Journal %D 2024 %P 801-815 %V 74 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0002-24/ %R 10.21136/CMJ.2024.0002-24 %G en %F 10_21136_CMJ_2024_0002_24
Jayaraman, Sachindranath; Mer, Vatsalkumar N. On linear maps leaving invariant the copositive/completely positive cones. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 801-815. doi: 10.21136/CMJ.2024.0002-24
[1] Cain, B., Hershkowitz, D., Schneider, H.: Theorems of the alternative for cones and Lyapunov regularity of matrices. Czech. Math. J. 47 (1997), 487-499. | DOI | MR | JFM
[2] Chandrashekaran, A., Jayaraman, S., Mer, V. N.: Semipositivity of linear maps relative to proper cones in finite dimensional real Hilbert spaces. Electron. J. Linear Algebra 34 (2018), 304-319. | DOI | MR | JFM
[3] Chandrashekaran, A., Jayaraman, S., Mer, V. N.: A characterization of nonnegativity relative to proper cones. Indian J. Pure Appl. Math. 51 (2020), 935-944. | DOI | MR | JFM
[4] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10 (1975), 285-290. | DOI | MR | JFM
[5] Furtado, S., Johnson, C. R., Zhang, Y.: Linear preservers of copositive matrices. Linear Multilinear Algebra 69 (2021), 1779-1788. | DOI | MR | JFM
[6] Gowda, M. S.: On copositive and completely positive cones and $Z$-transformations. Electron. J. Linear Algebra 23 (2012), 198-211. | DOI | MR | JFM
[7] Gowda, M. S., Song, Y. J., Sivakumar, K. C.: Some characterizations of cone preserving $Z$-transformations. Ann. Oper. Res. 287 (2020), 727-736. | DOI | MR | JFM
[8] Gowda, M. S., Sznajder, R.: On the irreducibility, self-duality and non-homogeneity of complete positive cones. Electron. J. Linear Algebra 26 (2013), 177-191. | DOI | MR | JFM
[9] Gowda, M. S., Sznajder, R., Tao, J.: The automorphism group of a completely positive cone and its Lie algebra. Linear Algebra Appl. 438 (2013), 3862-3871. | DOI | MR | JFM
[10] Johnson, C. R., Smith, R. L., Tsatsomeros, M. J.: Matrix Positivity. Cambridge Tracts in Mathematics 221. Cambridge University Press, Cambridge (2020). | DOI | MR | JFM
[11] Loewy, R., Schneider, H.: Positive operators on the $n$-dimensional ice cream cone. J. Math. Anal. Appl. 49 (1975), 375-392. | DOI | MR | JFM
[12] Orlitzky, M. J.: Positive and $Z$-operators on closed convex cones. Electron. J. Linear Algebra 34 (2018), 444-458. | DOI | MR | JFM
[13] Pierce, S., al., et: A survey of linear preserver problems. Linear Multilinear Algebra 33 (1992), 1-129. | DOI | MR
[14] Shaked-Monderer, N., Berman, A.: Copositive and Completely Positive Matrices. World Scientific, Hackensack (2021). | DOI | MR | JFM
[15] Shanmugapriya, A., Chandrashekaran, A.: On the dual of the tensor product of semidefinite cones. J. Anal. 32 (2024), 19-26. | DOI | MR
[16] Shitov, Y.: Linear mappings preserving the copositive cone. Proc. Am. Math. Soc. 149 (2021), 3173-3176. | DOI | MR | JFM
[17] Sznajder, R.: A representation theorem for the Lorentz cone automorphisms. J. Optim. Theory Appl. 202 (2024), 296-302. | DOI | MR
[18] Tam, B.-S.: On the structure of the cone of positive operators. Linear Algebra Appl. 167 (1992), 65-85. | DOI | MR | JFM
Cité par Sources :