Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 153-175
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The self-consistent chemotaxis-fluid system $$ \begin{cases} n_t+u\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla c )+\nabla \cdot (n\nabla \phi ), \in \Omega ,\ t>0,\\ c_t +u\cdot \nabla c=\Delta c -nc,\quad \in \Omega ,\ t>0,\\ u_t+\kappa (u\cdot \nabla ) u+\nabla P=\Delta u - n\nabla \phi +n \nabla c,\qquad \in \Omega ,\ t>0,\\ \nabla \cdot u=0,\quad \in \Omega ,\ t>0, \end{cases} $$ is considered under no-flux boundary conditions for $n, c$ and the Dirichlet boundary condition for $u$ on a bounded smooth domain $ \Omega \subset \mathbb {R}^N$ $(N=2,3)$, $\kappa \in \lbrace 0,1 \rbrace $. The existence of global bounded classical solutions is proved under a smallness assumption on $\|c_{0}\|_{L^{\infty }(\Omega )}$. \endgraf Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid systems. The literature on self-consistent chemotaxis-fluid systems of this type so far concentrates on the nonlinear cell diffusion as an additional dissipative mechanism. To the best of our knowledge, this is the first result on the boundedness of a self-consistent chemotaxis-fluid system with linear cell diffusion.
The self-consistent chemotaxis-fluid system $$ \begin{cases} n_t+u\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla c )+\nabla \cdot (n\nabla \phi ), \in \Omega ,\ t>0,\\ c_t +u\cdot \nabla c=\Delta c -nc,\quad \in \Omega ,\ t>0,\\ u_t+\kappa (u\cdot \nabla ) u+\nabla P=\Delta u - n\nabla \phi +n \nabla c,\qquad \in \Omega ,\ t>0,\\ \nabla \cdot u=0,\quad \in \Omega ,\ t>0, \end{cases} $$ is considered under no-flux boundary conditions for $n, c$ and the Dirichlet boundary condition for $u$ on a bounded smooth domain $ \Omega \subset \mathbb {R}^N$ $(N=2,3)$, $\kappa \in \lbrace 0,1 \rbrace $. The existence of global bounded classical solutions is proved under a smallness assumption on $\|c_{0}\|_{L^{\infty }(\Omega )}$. \endgraf Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid systems. The literature on self-consistent chemotaxis-fluid systems of this type so far concentrates on the nonlinear cell diffusion as an additional dissipative mechanism. To the best of our knowledge, this is the first result on the boundedness of a self-consistent chemotaxis-fluid system with linear cell diffusion.
DOI :
10.21136/CMJ.2023.0570-22
Classification :
35K55, 35Q35, 35Q92, 92C17
Keywords: chemotaxis; Navier-Stokes system; self-consistent; global existence; boundedness
Keywords: chemotaxis; Navier-Stokes system; self-consistent; global existence; boundedness
@article{10_21136_CMJ_2023_0570_22,
author = {Li, Yanjiang and Yu, Zhongqing and Huang, Yumei},
title = {Global classical solutions in a self-consistent {chemotaxis(-Navier)-Stokes} system},
journal = {Czechoslovak Mathematical Journal},
pages = {153--175},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2023.0570-22},
mrnumber = {4717827},
zbl = {07893372},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/}
}
TY - JOUR AU - Li, Yanjiang AU - Yu, Zhongqing AU - Huang, Yumei TI - Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system JO - Czechoslovak Mathematical Journal PY - 2024 SP - 153 EP - 175 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/ DO - 10.21136/CMJ.2023.0570-22 LA - en ID - 10_21136_CMJ_2023_0570_22 ER -
%0 Journal Article %A Li, Yanjiang %A Yu, Zhongqing %A Huang, Yumei %T Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system %J Czechoslovak Mathematical Journal %D 2024 %P 153-175 %V 74 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/ %R 10.21136/CMJ.2023.0570-22 %G en %F 10_21136_CMJ_2023_0570_22
Li, Yanjiang; Yu, Zhongqing; Huang, Yumei. Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 153-175. doi: 10.21136/CMJ.2023.0570-22
Cité par Sources :