Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 153-175.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The self-consistent chemotaxis-fluid system $$ \begin{cases} n_t+u\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla c )+\nabla \cdot (n\nabla \phi ), \in \Omega ,\ t>0,\\ c_t +u\cdot \nabla c=\Delta c -nc,\quad \in \Omega ,\ t>0,\\ u_t+\kappa (u\cdot \nabla ) u+\nabla P=\Delta u - n\nabla \phi +n \nabla c,\qquad \in \Omega ,\ t>0,\\ \nabla \cdot u=0,\quad \in \Omega ,\ t>0, \end{cases} $$ is considered under no-flux boundary conditions for $n, c$ and the Dirichlet boundary condition for $u$ on a bounded smooth domain $ \Omega \subset \mathbb {R}^N$ $(N=2,3)$, $\kappa \in \lbrace 0,1 \rbrace $. The existence of global bounded classical solutions is proved under a smallness assumption on $\|c_{0}\|_{L^{\infty }(\Omega )}$. \endgraf Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid systems. The literature on self-consistent chemotaxis-fluid systems of this type so far concentrates on the nonlinear cell diffusion as an additional dissipative mechanism. To the best of our knowledge, this is the first result on the boundedness of a self-consistent chemotaxis-fluid system with linear cell diffusion.
DOI : 10.21136/CMJ.2023.0570-22
Classification : 35K55, 35Q35, 35Q92, 92C17
Keywords: chemotaxis; Navier-Stokes system; self-consistent; global existence; boundedness
@article{10_21136_CMJ_2023_0570_22,
     author = {Li, Yanjiang and Yu, Zhongqing and Huang, Yumei},
     title = {Global classical solutions in a self-consistent {chemotaxis(-Navier)-Stokes} system},
     journal = {Czechoslovak Mathematical Journal},
     pages = {153--175},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2024},
     doi = {10.21136/CMJ.2023.0570-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/}
}
TY  - JOUR
AU  - Li, Yanjiang
AU  - Yu, Zhongqing
AU  - Huang, Yumei
TI  - Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 153
EP  - 175
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/
DO  - 10.21136/CMJ.2023.0570-22
LA  - en
ID  - 10_21136_CMJ_2023_0570_22
ER  - 
%0 Journal Article
%A Li, Yanjiang
%A Yu, Zhongqing
%A Huang, Yumei
%T Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system
%J Czechoslovak Mathematical Journal
%D 2024
%P 153-175
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/
%R 10.21136/CMJ.2023.0570-22
%G en
%F 10_21136_CMJ_2023_0570_22
Li, Yanjiang; Yu, Zhongqing; Huang, Yumei. Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 153-175. doi : 10.21136/CMJ.2023.0570-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/

Cité par Sources :