Keywords: chemotaxis; Navier-Stokes system; self-consistent; global existence; boundedness
@article{10_21136_CMJ_2023_0570_22,
author = {Li, Yanjiang and Yu, Zhongqing and Huang, Yumei},
title = {Global classical solutions in a self-consistent {chemotaxis(-Navier)-Stokes} system},
journal = {Czechoslovak Mathematical Journal},
pages = {153--175},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2023.0570-22},
mrnumber = {4717827},
zbl = {07893372},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/}
}
TY - JOUR AU - Li, Yanjiang AU - Yu, Zhongqing AU - Huang, Yumei TI - Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system JO - Czechoslovak Mathematical Journal PY - 2024 SP - 153 EP - 175 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/ DO - 10.21136/CMJ.2023.0570-22 LA - en ID - 10_21136_CMJ_2023_0570_22 ER -
%0 Journal Article %A Li, Yanjiang %A Yu, Zhongqing %A Huang, Yumei %T Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system %J Czechoslovak Mathematical Journal %D 2024 %P 153-175 %V 74 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0570-22/ %R 10.21136/CMJ.2023.0570-22 %G en %F 10_21136_CMJ_2023_0570_22
Li, Yanjiang; Yu, Zhongqing; Huang, Yumei. Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 153-175. doi: 10.21136/CMJ.2023.0570-22
[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. | DOI | MR | JFM
[2] Bellomo, N., Outada, N., Soler, J., Tao, Y., Winkler, M.: Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision. Math. Models Methods Appl. Sci. 32 (2022), 713-792. | DOI | MR | JFM
[3] Cao, X.: Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term. J. Differ. Equations 261 (2016), 6883-6914. | DOI | MR | JFM
[4] Carrillo, J. A., Peng, Y., Xiang, Z.: Global existence and decay rates to self-consistent chemotaxis-fluid system. Available at , 36 pages. | arXiv | MR
[5] Chae, M., Kang, K., Lee, J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. 33 (2013), 2271-2297. | DOI | MR | JFM
[6] Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller-Segel models coupled to fluid equations. Commun. Partial Differ. Equations 39 (2014), 1205-1235. | DOI | MR | JFM
[7] Francesco, M. Di, Lorz, A., Markowich, P. A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28 (2010), 1437-1453. | DOI | MR | JFM
[8] Duan, R., Li, X., Xiang, Z.: Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system. J. Differ. Equations 263 (2017), 6284-6316. | DOI | MR | JFM
[9] Duan, R., Lorz, A., Markowich, P. A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equations 35 (2010), 1635-1673. | DOI | MR | JFM
[10] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy 38. Springer, Berlin (1994). | DOI | MR | JFM
[11] He, P., Wang, Y., Zhao, L.: A further study on a 3D chemotaxis-Stokes system with tensor-valued sensitivity. Appl. Math. Lett. 90 (2019), 23-29. | DOI | MR | JFM
[12] Horstmann, D.: From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. | MR | JFM
[13] Ishida, S.: Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete Contin. Dyn. Syst. 35 (2015), 3463-3482. | DOI | MR | JFM
[14] Jin, C.: Global bounded solution in three-dimensional chemotaxis-Stokes model with arbitrary porous medium slow diffusion. Available at , 24 pages. | arXiv | MR
[15] Jin, C., Wang, Y., Yin, J.: Global solvability and stability to a nutrient-taxis model with porous medium slow diffusion. Available at , 35 pages. | arXiv | MR
[16] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. | DOI | MR | JFM
[17] Kozono, H., Yanagisawa, T.: Leray's problem on the stationary Navier-Stokes equations with inhomogeneous boundary data. Math. Z. 262 (2009), 27-39. | DOI | MR | JFM
[18] Li, X., Wang, Y., Xiang, Z.: Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Commun. Math. Sci. 14 (2016), 1889-1910. | DOI | MR | JFM
[19] Liu, J.-G., Lorz, A.: A coupled chemotaxis-fluid model: Global existence. Ann. Inst. H. Poincaré, Anal. Non Linéaire 28 (2011), 643-652. | DOI | MR | JFM
[20] Lorz, A.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20 (2010), 987-1004. | DOI | MR | JFM
[21] Patlak, C. S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15 (1953), 311-338. | DOI | MR | JFM
[22] Peng, Y., Xiang, Z.: Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Z. Angew. Math. Phys. 68 (2017), Article ID 68, 26 pages. | DOI | MR | JFM
[23] Tan, Z., Zhang, X.: Decay estimates of the coupled chemotaxis-fluid equations in $\Bbb{R}^3$. J. Math. Anal. Appl. 410 (2014), 27-38. | DOI | MR | JFM
[24] Tao, Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381 (2011), 521-529. | DOI | MR | JFM
[25] Tao, Y., Winkler, M.: Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. 32 (2012), 1901-1914. | DOI | MR | JFM
[26] Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C. W., Kessler, J. O., Goldstein, R. E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102 (2005), 2277-2282. | DOI | JFM
[27] Wang, Y.: Global solvability in a two-dimensional self-consistent chemotaxis-Navier- Stokes system. Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 329-349. | DOI | MR | JFM
[28] Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. | DOI | MR | JFM
[29] Wang, Y., Winkler, M., Xiang, Z.: The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system. Math. Z. 289 (2018), 71-108. | DOI | MR | JFM
[30] Wang, Y., Zhao, L.: A 3D self-consistent chemotaxis-fluid system with nonlinear diffusion. J. Differ. Equations 269 (2020), 148-179. | DOI | MR | JFM
[31] Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachr. 283 (2010), 1664-1673. | DOI | MR | JFM
[32] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller- Segel model. J. Differ. Equations 248 (2010), 2889-2905. | DOI | MR | JFM
[33] Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equations 37 (2012), 319-351. | DOI | MR | JFM
[34] Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211 (2014), 455-487. | DOI | MR | JFM
[35] Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Equ. 54 (2015), 3789-3828. | DOI | MR | JFM
[36] Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann. Inst. H. Poincaré, Anal. Non Linéaire 33 (2016), 1329-1352. | DOI | MR | JFM
[37] Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier- Stokes system?. Trans. Am. Math. Soc. 369 (2017), 3067-3125. | DOI | MR | JFM
[38] Winkler, M.: Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement. J. Differ. Equations 264 (2018), 6109-6151. | DOI | MR | JFM
[39] Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization. J. Funct. Anal. 276 (2019), 1339-1401. | DOI | MR | JFM
[40] Yu, P.: Global existence and boundedness in a chemotaxis-Stokes system with arbitrary porous medium diffusion. Math. Methods Appl. Sci. 43 (2020), 639-657. | DOI | MR | JFM
[41] Zhang, Q., Li, Y.: Convergence rates of solutions for a two-dimensional chemotaxis- Navier-Stokes system. Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2751-2759. | DOI | MR | JFM
[42] Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier- Stokes system with nonlinear diffusion. J. Differ. Equations 259 (2015), 3730-3754. | DOI | MR | JFM
[43] Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations. SIAM J. Math. Anal. 46 (2014), 3078-3105. | DOI | MR | JFM
[44] Zheng, J.: Global existence and boundedness in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Ann. Mat. Pura Appl. (4) 201 (2022), 243-288. | DOI | MR | JFM
Cité par Sources :