Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 127-151
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the chemotaxis system with singular sensitivity and logistic-type source: $u_t=\Delta u-\chi \nabla \cdot (u \nabla v/ v) +ru-\mu u^k$, $0=\Delta v-v+u$ under the non-flux boundary conditions in a smooth bounded domain $\Omega \subset \mathbb {R}^n$, $\chi ,r,\mu >0$, $k>1$ and $n\ge 1$. It is shown with $k\in (1,2)$ that the system possesses a global generalized solution for $n\ge 2$ which is bounded when $\chi >0$ is suitably small related to $r>0$ and the initial datum is properly small, and a global bounded classical solution for $n=1$.
We study the chemotaxis system with singular sensitivity and logistic-type source: $u_t=\Delta u-\chi \nabla \cdot (u \nabla v/ v) +ru-\mu u^k$, $0=\Delta v-v+u$ under the non-flux boundary conditions in a smooth bounded domain $\Omega \subset \mathbb {R}^n$, $\chi ,r,\mu >0$, $k>1$ and $n\ge 1$. It is shown with $k\in (1,2)$ that the system possesses a global generalized solution for $n\ge 2$ which is bounded when $\chi >0$ is suitably small related to $r>0$ and the initial datum is properly small, and a global bounded classical solution for $n=1$.
DOI : 10.21136/CMJ.2023.0544-22
Classification : 35B45, 35K55, 92C17
Keywords: chemotaxis; singular sensitivity; global solvability
@article{10_21136_CMJ_2023_0544_22,
     author = {Zhao, Xiangdong},
     title = {Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source},
     journal = {Czechoslovak Mathematical Journal},
     pages = {127--151},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2023.0544-22},
     mrnumber = {4717826},
     zbl = {07893371},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0544-22/}
}
TY  - JOUR
AU  - Zhao, Xiangdong
TI  - Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 127
EP  - 151
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0544-22/
DO  - 10.21136/CMJ.2023.0544-22
LA  - en
ID  - 10_21136_CMJ_2023_0544_22
ER  - 
%0 Journal Article
%A Zhao, Xiangdong
%T Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source
%J Czechoslovak Mathematical Journal
%D 2024
%P 127-151
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0544-22/
%R 10.21136/CMJ.2023.0544-22
%G en
%F 10_21136_CMJ_2023_0544_22
Zhao, Xiangdong. Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 127-151. doi: 10.21136/CMJ.2023.0544-22

[1] Black, T.: Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 119-137. | DOI | MR | JFM

[2] Ding, M., Wang, W., Zhou, S.: Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source. Nonlinear Anal., Real World Appl. 49 (2019), 286-311. | DOI | MR | JFM

[3] Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 424 (2015), 675-684. | DOI | MR | JFM

[4] Fujie, K., Senba, T.: Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 81-102. | DOI | MR | JFM

[5] Fujie, K., Senba, T.: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity 29 (2016), 2417-2450. | DOI | MR | JFM

[6] Fujie, K., Winkler, M., Yokota, T.: Blow-up prevention by logistic sources in a parabolic- elliptic Keller-Segel system with singular sensitivity. Nonlinear Anal., Theory Methods Appl., Ser. A 109 (2014), 56-71. | DOI | MR | JFM

[7] Fujie, K., Winkler, M., Yokota, T.: Boundedness of solutions to parabolic-elliptic Keller- Segel systems with signal-dependent sensitivity. Math. Methods Appl. Sci. 38 (2015), 1212-1224. | DOI | MR | JFM

[8] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. | DOI | MR | JFM

[9] Kurt, H. I., Shen, W.: Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting. SIAM J. Math. Anal. 53 (2021), 973-1003. | DOI | MR | JFM

[10] Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equations 258 (2015), 1158-1191. | DOI | MR | JFM

[11] Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data. NoDEA, Nonlinear Differ. Equ. Appl. 24 (2017), Article ID 49, 33 pages. | DOI | MR | JFM

[12] Nagai, T., Senba, T.: Behavior of radially symmetric solutions of a system related to chemotaxis. Nonlinear Anal., Theory Methods Appl. 30 (1997), 3837-3842. | DOI | MR | JFM

[13] Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal., Theory Methods Appl., Ser. A 51 (2002), 119-144. | DOI | MR | JFM

[14] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. | MR | JFM

[15] Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46 (2014), 1969-2007. | DOI | MR | JFM

[16] Tao, Y., Winkler, M.: Persistence of mass in a chemotaxis system with logistic source. J. Differ. Equations 259 (2015), 6142-6161. | DOI | MR | JFM

[17] Tello, J. I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equations 32 (2007), 849-877. | DOI | MR | JFM

[18] Viglialoro, G.: Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source. J. Math. Anal. Appl. 439 (2016), 197-212. | DOI | MR | JFM

[19] Viglialoro, G.: Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source. Nonlinear Anal., Real World Appl. 34 (2017), 520-535. | DOI | MR | JFM

[20] Winkler, M.: Chemotaxis with logistic source: Very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348 (2008), 708-729. | DOI | MR | JFM

[21] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller- Segel model. J. Differ. Equations 248 (2010), 2889-2905. | DOI | MR | JFM

[22] Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equqtions 35 (2010), 1516-1537. | DOI | MR | JFM

[23] Winkler, M.: How strong singularities can be regularized by logistic degradation in the Keller-Segel system?. Ann. Mat. Pura Appl. (4) 198 (2019), 1615-1637. | DOI | MR | JFM

[24] Winkler, M.: The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in $L^1$. Adv. Nonlinear Anal. 9 (2020), 526-566. | DOI | MR | JFM

[25] Winkler, M.: $L^1$ solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 24 (2023), 141-172. | DOI | MR | JFM

[26] Zhang, W.: Global generalized solvability in the Keller-Segel system with singular sensitivity and arbitrary superlinear degradation. Discrete Contin. Dyn. Syst., Ser. B 28 (2023), 1267-1278. | DOI | MR | JFM

[27] Zhao, X.: Boundedness to a parabolic-parabolic singular chemotaxis system with logistic source. J. Differ. Equations 338 (2022), 388-414. | DOI | MR | JFM

[28] Zhao, X., Zheng, S.: Global boundedness to a chemotaxis system with singular sensitivity and logistic source. Z. Angew. Math. Phys. 68 (2017), Article ID 2, 13 pages. | DOI | MR | JFM

[29] Zhao, X., Zheng, S.: Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source. J. Differ. Equations 267 (2019), 826-865. | DOI | MR | JFM

Cité par Sources :