Symmetries in connected graded algebras and their PBW-deformations
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1255-1272
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We focus on connected graded algebras and their PBW-deformations endowed with additional symmetric structures. Many well-known algebras such as negative parts of Drinfeld-Jimbo's quantum groups, cubic Artin-Schelter algebras and three-dimensional Sklyanin algebras appear in our research framework. As an application, we investigate a $\mathcal {K}_2$ algebra $\mathcal {A}$ which was introduced to compute the cohomology ring of the Fomin-Kirillov algebra $\mathcal {FK}_3$, and explicitly construct all the (self-)symmetric and sign-(self-)symmetric PBW-deformations of $\mathcal {A}$.
We focus on connected graded algebras and their PBW-deformations endowed with additional symmetric structures. Many well-known algebras such as negative parts of Drinfeld-Jimbo's quantum groups, cubic Artin-Schelter algebras and three-dimensional Sklyanin algebras appear in our research framework. As an application, we investigate a $\mathcal {K}_2$ algebra $\mathcal {A}$ which was introduced to compute the cohomology ring of the Fomin-Kirillov algebra $\mathcal {FK}_3$, and explicitly construct all the (self-)symmetric and sign-(self-)symmetric PBW-deformations of $\mathcal {A}$.
DOI : 10.21136/CMJ.2023.0511-22
Classification : 16S80
Keywords: connected graded algebra; PBW-deformation; self-symmetry; sign-symmetry; $\mathcal {K}_2$ algebra
@article{10_21136_CMJ_2023_0511_22,
     author = {Xu, Yongjun and Zhang, Xin},
     title = {Symmetries in connected graded algebras and their {PBW-deformations}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1255--1272},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0511-22},
     zbl = {07790572},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0511-22/}
}
TY  - JOUR
AU  - Xu, Yongjun
AU  - Zhang, Xin
TI  - Symmetries in connected graded algebras and their PBW-deformations
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1255
EP  - 1272
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0511-22/
DO  - 10.21136/CMJ.2023.0511-22
LA  - en
ID  - 10_21136_CMJ_2023_0511_22
ER  - 
%0 Journal Article
%A Xu, Yongjun
%A Zhang, Xin
%T Symmetries in connected graded algebras and their PBW-deformations
%J Czechoslovak Mathematical Journal
%D 2023
%P 1255-1272
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0511-22/
%R 10.21136/CMJ.2023.0511-22
%G en
%F 10_21136_CMJ_2023_0511_22
Xu, Yongjun; Zhang, Xin. Symmetries in connected graded algebras and their PBW-deformations. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1255-1272. doi: 10.21136/CMJ.2023.0511-22

[1] Berger, R.: Koszulity for nonquadratic algebras. J. Algebra 239 (2001), 705-734. | DOI | MR | JFM

[2] Berger, R., Ginzburg, V.: Higher symplectic reflection algebras and non-homogeneous $N$-Koszul property. J. Algebra 304 (2006), 577-601. | DOI | MR | JFM

[3] Berger, R., Taillefer, R.: Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras. J. Noncommut. Geom. 1 (2007), 241-270. | DOI | MR | JFM

[4] Braverman, A., Gaitsgory, D.: Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type. J. Algebra 181 (1996), 315-328. | DOI | MR | JFM

[5] Cassidy, T., Shelton, B.: PBW-deformation theory and regular central extensions. J. Reine Angew. Math. 610 (2007), 1-12. | DOI | MR | JFM

[6] Cassidy, T., Shelton, B.: Generalizing the notion of Koszul algebra. Math. Z. 260 (2008), 93-114. | DOI | MR | JFM

[7] Etingof, P., Ginzburg, V.: Noncommutative del Pezzo surfaces and Calabi-Yau algebras. J. Eur. Math. Soc. (JEMS) 12 (2010), 1371-1416. | DOI | MR | JFM

[8] Fløystad, G., Vatne, J. E.: PBW-deformations of $N$-Koszul algebras. J. Algebra 302 (2006), 116-155. | DOI | MR | JFM

[9] Fuchs, J., Schellekens, B., Schweigert, C.: From Dynkin diagram symmetries to fixed point structures. Commun. Math. Phys. 180 (1996), 39-97. | DOI | MR | JFM

[10] Gavrilik, A. M., Klimyk, A. U.: $q$-deformed orthogonal and pseudo-orthogonal algebras and their representations. Lett. Math. Phys. 21 (1991), 215-220. | DOI | MR | JFM

[11] Heckenberger, I., Vendramin, L.: PBW deformations of a Fomin-Kirillov algebra and other examples. Algebr. Represent. Theory 22 (2019), 1513-1532. | DOI | MR | JFM

[12] Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics 9. Springer, New York (2006). | DOI | MR | JFM

[13] Iorgov, N. Z., Klimyk, A. U.: The nonstandard deformation $U'_{q}(so_n)$ for $q$ a root of unity. Methods Funct. Anal. Topol. 6 (2000), 56-71. | MR | JFM

[14] Iorgov, N. Z., Klimyk, A. U.: Classification theorem on irreducible representations of the $q$-deformed algebra $U'_{q}(so_n)$. Int. J. Math. Math. Sci. 2005 (2005), 225-262. | DOI | MR | JFM

[15] Kolb, S., Pellegrini, J.: Braid group actions on coideal subalgebras of quantized enveloping algebras. J. Algebra 336 (2011), 395-416. | DOI | MR | JFM

[16] Letzter, G.: Subalgebras which appear in quantum Iwasawa decompositions. Can. J. Math. 49 (1997), 1206-1223. | DOI | MR | JFM

[17] Letzter, G.: Symmetric pairs for quantized enveloping algebras. J. Algebra 220 (1999), 729-767. | DOI | MR | JFM

[18] Letzter, G.: Coideal subalgebras and quantum symmetric pairs. New Directions in Hopf Algebras Mathematical Sciences Research Institute Publications 43. Cambridge University Press, Cambridge (2002), 117-166. | MR | JFM

[19] Letzter, G.: Quantum symmetric pairs and their zonal spherical functions. Transform. Groups 8 (2003), 261-292. | DOI | MR | JFM

[20] Polishchuk, A., Positselski, L.: Quadratic Algebras. University Lecture Series 37. AMS, Providence (2005). | DOI | MR | JFM

[21] Ştefan, D., Vay, C.: The cohomology ring of the 12-dimensional Fomin-Kirillov algebra. Adv. Math. 291 (2016), 584-620. | DOI | MR | JFM

[22] Walton, C. M.: On Degenerations and Deformations of Sklyanin Algebras: Ph.D. Thesis. University of Michigan, Ann Arbor (2011). | MR

[23] Xu, Y., Huang, H.-L., Wang, D.: Realization of PBW-deformations of type $\Bbb A_n$ quantum groups via multiple Ore extensions. J. Pure Appl. Algebra 223 (2019), 1531-1547. | DOI | MR | JFM

[24] Xu, Y., Wang, D., Chen, J.: Analogues of quantum Schubert cell algebras in PBW-deformations of quantum groups. J. Algebra. Appl. 15 (2016), Article ID 1650179, 13 pages. | DOI | MR | JFM

[25] Xu, Y., Yang, S.: PBW-deformations of quantum groups. J. Algebra 408 (2014), 222-249. | DOI | MR | JFM

Cité par Sources :