Keywords: connected graded algebra; PBW-deformation; self-symmetry; sign-symmetry; $\mathcal {K}_2$ algebra
@article{10_21136_CMJ_2023_0511_22,
author = {Xu, Yongjun and Zhang, Xin},
title = {Symmetries in connected graded algebras and their {PBW-deformations}},
journal = {Czechoslovak Mathematical Journal},
pages = {1255--1272},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0511-22},
zbl = {07790572},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0511-22/}
}
TY - JOUR AU - Xu, Yongjun AU - Zhang, Xin TI - Symmetries in connected graded algebras and their PBW-deformations JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1255 EP - 1272 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0511-22/ DO - 10.21136/CMJ.2023.0511-22 LA - en ID - 10_21136_CMJ_2023_0511_22 ER -
%0 Journal Article %A Xu, Yongjun %A Zhang, Xin %T Symmetries in connected graded algebras and their PBW-deformations %J Czechoslovak Mathematical Journal %D 2023 %P 1255-1272 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0511-22/ %R 10.21136/CMJ.2023.0511-22 %G en %F 10_21136_CMJ_2023_0511_22
Xu, Yongjun; Zhang, Xin. Symmetries in connected graded algebras and their PBW-deformations. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1255-1272. doi: 10.21136/CMJ.2023.0511-22
[1] Berger, R.: Koszulity for nonquadratic algebras. J. Algebra 239 (2001), 705-734. | DOI | MR | JFM
[2] Berger, R., Ginzburg, V.: Higher symplectic reflection algebras and non-homogeneous $N$-Koszul property. J. Algebra 304 (2006), 577-601. | DOI | MR | JFM
[3] Berger, R., Taillefer, R.: Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras. J. Noncommut. Geom. 1 (2007), 241-270. | DOI | MR | JFM
[4] Braverman, A., Gaitsgory, D.: Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type. J. Algebra 181 (1996), 315-328. | DOI | MR | JFM
[5] Cassidy, T., Shelton, B.: PBW-deformation theory and regular central extensions. J. Reine Angew. Math. 610 (2007), 1-12. | DOI | MR | JFM
[6] Cassidy, T., Shelton, B.: Generalizing the notion of Koszul algebra. Math. Z. 260 (2008), 93-114. | DOI | MR | JFM
[7] Etingof, P., Ginzburg, V.: Noncommutative del Pezzo surfaces and Calabi-Yau algebras. J. Eur. Math. Soc. (JEMS) 12 (2010), 1371-1416. | DOI | MR | JFM
[8] Fløystad, G., Vatne, J. E.: PBW-deformations of $N$-Koszul algebras. J. Algebra 302 (2006), 116-155. | DOI | MR | JFM
[9] Fuchs, J., Schellekens, B., Schweigert, C.: From Dynkin diagram symmetries to fixed point structures. Commun. Math. Phys. 180 (1996), 39-97. | DOI | MR | JFM
[10] Gavrilik, A. M., Klimyk, A. U.: $q$-deformed orthogonal and pseudo-orthogonal algebras and their representations. Lett. Math. Phys. 21 (1991), 215-220. | DOI | MR | JFM
[11] Heckenberger, I., Vendramin, L.: PBW deformations of a Fomin-Kirillov algebra and other examples. Algebr. Represent. Theory 22 (2019), 1513-1532. | DOI | MR | JFM
[12] Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics 9. Springer, New York (2006). | DOI | MR | JFM
[13] Iorgov, N. Z., Klimyk, A. U.: The nonstandard deformation $U'_{q}(so_n)$ for $q$ a root of unity. Methods Funct. Anal. Topol. 6 (2000), 56-71. | MR | JFM
[14] Iorgov, N. Z., Klimyk, A. U.: Classification theorem on irreducible representations of the $q$-deformed algebra $U'_{q}(so_n)$. Int. J. Math. Math. Sci. 2005 (2005), 225-262. | DOI | MR | JFM
[15] Kolb, S., Pellegrini, J.: Braid group actions on coideal subalgebras of quantized enveloping algebras. J. Algebra 336 (2011), 395-416. | DOI | MR | JFM
[16] Letzter, G.: Subalgebras which appear in quantum Iwasawa decompositions. Can. J. Math. 49 (1997), 1206-1223. | DOI | MR | JFM
[17] Letzter, G.: Symmetric pairs for quantized enveloping algebras. J. Algebra 220 (1999), 729-767. | DOI | MR | JFM
[18] Letzter, G.: Coideal subalgebras and quantum symmetric pairs. New Directions in Hopf Algebras Mathematical Sciences Research Institute Publications 43. Cambridge University Press, Cambridge (2002), 117-166. | MR | JFM
[19] Letzter, G.: Quantum symmetric pairs and their zonal spherical functions. Transform. Groups 8 (2003), 261-292. | DOI | MR | JFM
[20] Polishchuk, A., Positselski, L.: Quadratic Algebras. University Lecture Series 37. AMS, Providence (2005). | DOI | MR | JFM
[21] Ştefan, D., Vay, C.: The cohomology ring of the 12-dimensional Fomin-Kirillov algebra. Adv. Math. 291 (2016), 584-620. | DOI | MR | JFM
[22] Walton, C. M.: On Degenerations and Deformations of Sklyanin Algebras: Ph.D. Thesis. University of Michigan, Ann Arbor (2011). | MR
[23] Xu, Y., Huang, H.-L., Wang, D.: Realization of PBW-deformations of type $\Bbb A_n$ quantum groups via multiple Ore extensions. J. Pure Appl. Algebra 223 (2019), 1531-1547. | DOI | MR | JFM
[24] Xu, Y., Wang, D., Chen, J.: Analogues of quantum Schubert cell algebras in PBW-deformations of quantum groups. J. Algebra. Appl. 15 (2016), Article ID 1650179, 13 pages. | DOI | MR | JFM
[25] Xu, Y., Yang, S.: PBW-deformations of quantum groups. J. Algebra 408 (2014), 222-249. | DOI | MR | JFM
Cité par Sources :