Periodic linear groups factorized by mutually permutable subgroups
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1229-1254
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim is to investigate the behaviour of (homomorphic images of) periodic linear groups which are factorized by mutually permutable subgroups. Mutually permutable subgroups have been extensively investigated in the finite case by several authors, among which, for our purposes, we only cite J. C. Beidleman and H. Heineken (2005). In a previous paper of ours (see M. Ferrara, M. Trombetti (2022)) we have been able to generalize the first main result of J. C. Beidleman, H. Heineken (2005) to periodic linear groups (showing that the commutator subgroups and the intersection of mutually permutable subgroups are subnormal subgroups of the whole group), and, in this paper, we completely generalize all other main results of J. C. Beidleman, H. Heineken (2005) to (homomorphic images of) periodic linear groups.
The aim is to investigate the behaviour of (homomorphic images of) periodic linear groups which are factorized by mutually permutable subgroups. Mutually permutable subgroups have been extensively investigated in the finite case by several authors, among which, for our purposes, we only cite J. C. Beidleman and H. Heineken (2005). In a previous paper of ours (see M. Ferrara, M. Trombetti (2022)) we have been able to generalize the first main result of J. C. Beidleman, H. Heineken (2005) to periodic linear groups (showing that the commutator subgroups and the intersection of mutually permutable subgroups are subnormal subgroups of the whole group), and, in this paper, we completely generalize all other main results of J. C. Beidleman, H. Heineken (2005) to (homomorphic images of) periodic linear groups.
DOI : 10.21136/CMJ.2023.0485-22
Classification : 20D40, 20F19, 20H20
Keywords: mutually permutable subgroup; periodic linear group
@article{10_21136_CMJ_2023_0485_22,
     author = {Ferrara, Maria and Trombetti, Marco},
     title = {Periodic linear groups factorized by mutually permutable subgroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1229--1254},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0485-22},
     zbl = {07790571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0485-22/}
}
TY  - JOUR
AU  - Ferrara, Maria
AU  - Trombetti, Marco
TI  - Periodic linear groups factorized by mutually permutable subgroups
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1229
EP  - 1254
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0485-22/
DO  - 10.21136/CMJ.2023.0485-22
LA  - en
ID  - 10_21136_CMJ_2023_0485_22
ER  - 
%0 Journal Article
%A Ferrara, Maria
%A Trombetti, Marco
%T Periodic linear groups factorized by mutually permutable subgroups
%J Czechoslovak Mathematical Journal
%D 2023
%P 1229-1254
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0485-22/
%R 10.21136/CMJ.2023.0485-22
%G en
%F 10_21136_CMJ_2023_0485_22
Ferrara, Maria; Trombetti, Marco. Periodic linear groups factorized by mutually permutable subgroups. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1229-1254. doi: 10.21136/CMJ.2023.0485-22

[1] Alejandre, M. J., Ballester-Bolinches, A., Cossey, J.: Permutable products of supersoluble groups. J. Algebra 276 (2004), 453-461. | DOI | MR | JFM

[2] Amberg, B., Franciosi, S., Giovanni, F. de: Products of Groups. Oxford Mathematical Monographs. Clarendon Press, Oxford (1992). | MR | JFM

[3] Asaad, M., Shaalan, A.: On the supersolvability of finite groups. Arch. Math. 53 (1989), 318-326. | DOI | MR | JFM

[4] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups. de Gruyter Expositions in Mathematics 53. Walter de Gruyter, Berlin (2010). | DOI | MR | JFM

[5] Beidleman, J., Heineken, H.: Totally permutable torsion subgroups. J. Group Theory 2 (1999), 377-392. | DOI | MR | JFM

[6] Beidleman, J. C., Heineken, H.: Mutually permutable subgroups and group classes. Arch. Math. 85 (2005), 18-30. | DOI | MR | JFM

[7] Celentani, M. R., Leone, A., Robinson, D. J. S.: The Maier-Schmid problem for infinite groups. J. Algebra 301 (2006), 294-307. | DOI | MR | JFM

[8] Falco, M. De, Giovanni, F. de, Musella, C., Sysak, Y. P.: On the upper central series of infinite groups. Proc. Am. Math. Soc. 139 (2011), 385-389. | DOI | MR | JFM

[9] Giovanni, F. de, Ialenti, R.: On groups with finite abelian section rank factorized by mutually permutable subgroups. Commun. Algebra 44 (2016), 118-124. | DOI | MR | JFM

[10] Giovanni, F. de, Trombetti, M.: Infinite minimal non-hypercyclic groups. J. Algebra Appl. 14 (2015), Article ID 1550143, 15 pages. | DOI | MR | JFM

[11] Giovanni, F. de, Trombetti, M., Wehrfritz, B. A. F.: Subnormality in linear groups. J. Pure Appl. Algebra 227 (2023), Article ID 107185, 16 pages. | DOI | MR | JFM

[12] Ferrara, M., Trombetti, M.: On groups factorized by mutually permutable subgroups. Result. Math. 77 (2022), Article ID 211, 15 pages. | DOI | MR | JFM

[13] Franciosi, S., Giovanni, F. de: Groups with many supersoluble subgroups. Ric. Mat. 40 (1991), 321-333. | MR | JFM

[14] Hall, P., Higman, G.: On the $p$-length of $p$-soluble groups and reduction theorems for Burnside's problem. Proc. Lond. Math. Soc., III. Ser. 6 (1956), 1-42. | DOI | MR | JFM

[15] Phillips, R. E., Rainbolt, J. G.: Images of periodic linear groups. Arch. Math. 71 (1998), 97-106. | DOI | MR | JFM

[16] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 1. Ergebnisse der Mathematik und ihrer Grenzgebiete 62. Springer, Berlin (1972). | DOI | MR | JFM

[17] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14. Walter De Gruyter, Berlin (1994). | DOI | MR | JFM

[18] Shirvani, M., Wehrfritz, B. A. F.: Skew Linear Groups. London Mathematical Society Lecture Note Series 118. Cambridge University Press, Cambridge (1986). | MR | JFM

[19] Wehfritz, B. A. F.: Supersoluble and locally supersoluble linear groups. J. Algebra 17 (1971), 41-58. | DOI | MR | JFM

[20] Wehfritz, B. A. F.: Infinite Linear Groups: An Account of the Group-Theoretic Properties of Infinite Groups of Matrices. Ergebnisse der Mathematik und ihrer Grenzgebiete 76. Springer, Berlin (1973). | DOI | MR | JFM

Cité par Sources :