On pairs of Goldbach-Linnik equations with unequal powers of primes
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1219-1228
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is proved that every pair of sufficiently large odd integers can be represented by a pair of equations, each containing two squares of primes, two cubes of primes, two fourth powers of primes and 105 powers of 2.
It is proved that every pair of sufficiently large odd integers can be represented by a pair of equations, each containing two squares of primes, two cubes of primes, two fourth powers of primes and 105 powers of 2.
DOI : 10.21136/CMJ.2023.0470-22
Classification : 11P05, 11P32, 11P55
Keywords: Goldbach-Waring-Linnik problem; circle method; powers of 2
@article{10_21136_CMJ_2023_0470_22,
     author = {Huang, Enxun},
     title = {On pairs of {Goldbach-Linnik} equations with unequal powers of primes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1219--1228},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0470-22},
     zbl = {07790570},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0470-22/}
}
TY  - JOUR
AU  - Huang, Enxun
TI  - On pairs of Goldbach-Linnik equations with unequal powers of primes
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1219
EP  - 1228
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0470-22/
DO  - 10.21136/CMJ.2023.0470-22
LA  - en
ID  - 10_21136_CMJ_2023_0470_22
ER  - 
%0 Journal Article
%A Huang, Enxun
%T On pairs of Goldbach-Linnik equations with unequal powers of primes
%J Czechoslovak Mathematical Journal
%D 2023
%P 1219-1228
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0470-22/
%R 10.21136/CMJ.2023.0470-22
%G en
%F 10_21136_CMJ_2023_0470_22
Huang, Enxun. On pairs of Goldbach-Linnik equations with unequal powers of primes. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1219-1228. doi: 10.21136/CMJ.2023.0470-22

[1] Heath-Brown, D. R., Puchta, J.-C.: Integers represented as a sum of primes and powers of two. Asian J. Math. 6 (2002), 535-565. | DOI | MR | JFM

[2] Kong, Y.: On pairs of linear equations in four prime variables and powers of two. Bull. Aust. Math. Soc. 87 (2013), 55-67. | DOI | MR | JFM

[3] Kong, Y., Liu, Z.: On pairs of Goldbach-Linnik equations. Bull. Aust. Math. Soc. 95 (2017), 199-208. | DOI | MR | JFM

[4] Kumchev, A. V.: On Weyl sums over primes and almost primes. Mich. Math. J. 54 (2006), 243-268. | DOI | MR | JFM

[5] Languasco, A., Zaccagnini, A.: On a Diophantine problem with two primes and $s$ powers of two. Acta Arith. 145 (2010), 193-208. | DOI | MR | JFM

[6] Linnik, Y. V.: Prime numbers and powers of two. Tr. Mat. Inst. Steklova 38 (1951), 152-169 Russian. | MR | JFM

[7] Linnik, Y. V.: Addition of prime numbers with powers of one and the same number. Mat. Sb., N. Ser. 32 (1953), 3-60 Russian. | MR | JFM

[8] Liu, J.: Enlarged major arcs in additive problems. II. Proc. Steklov Inst. Math. 276 (2012), 176-192. | DOI | MR | JFM

[9] Liu, Z.: Goldbach-Linnik type problems with unequal powers of primes. J. Number Theory 176 (2017), 439-448. | DOI | MR | JFM

[10] Liu, J., Liu, M.-C., Wang, T.: On the almost Goldbach problem of Linnik. J. Théor. Nombres Bordx. 11 (1999), 133-147. | DOI | MR | JFM

[11] Lü, X.: On unequal powers of primes and powers of 2. Ramanujan J. 50 (2019), 111-121. | DOI | MR | JFM

[12] Pintz, J., Ruzsa, I. Z.: On Linnik's approximation to Goldbach's problem. I. Acta. Arith. 109 (2003), 169-194. | DOI | MR | JFM

[13] Zhao, L.: On the Waring-Goldbach problem for fourth and sixth powers. Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. | DOI | MR | JFM

[14] Zhao, X.: Goldbach-Linnik type problems on cubes of primes. Ramanujan J. 57 (2022), 239-251. | DOI | MR | JFM

Cité par Sources :