On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 487-498
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For $k\in {\mathbb N} \cup \{\infty \}$ and $U$ open in $ {\mathbb R}$, let ${\rm C}^{k}(U)$ be the ring of real valued functions on $U$ with the first $k$ derivatives continuous. It is shown that for $f\in {\rm C}^{k}(U)$ there is $g\in {\rm C}^{\infty } ({\mathbb R})$ with $U\subseteq {\rm coz} g$ and $h\in {\rm C}^{k} ({\mathbb R})$ with $fg|_U=h|_U$. The function $f$ and its $k$ derivatives are not assumed to be bounded on $U$. The function $g$ is constructed using splines based on the Mollifier function. Some consequences about the ring ${\rm C}^{k} ({\mathbb R})$ are deduced from this, in particular that ${\rm Q}_{\rm cl} ({\rm C}^{k} ({\mathbb R})) = {\rm Q}({\rm C}^{k} ({\mathbb R}))$.
For $k\in {\mathbb N} \cup \{\infty \}$ and $U$ open in $ {\mathbb R}$, let ${\rm C}^{k}(U)$ be the ring of real valued functions on $U$ with the first $k$ derivatives continuous. It is shown that for $f\in {\rm C}^{k}(U)$ there is $g\in {\rm C}^{\infty } ({\mathbb R})$ with $U\subseteq {\rm coz} g$ and $h\in {\rm C}^{k} ({\mathbb R})$ with $fg|_U=h|_U$. The function $f$ and its $k$ derivatives are not assumed to be bounded on $U$. The function $g$ is constructed using splines based on the Mollifier function. Some consequences about the ring ${\rm C}^{k} ({\mathbb R})$ are deduced from this, in particular that ${\rm Q}_{\rm cl} ({\rm C}^{k} ({\mathbb R})) = {\rm Q}({\rm C}^{k} ({\mathbb R}))$.
DOI : 10.21136/CMJ.2023.0445-21
Classification : 13B30, 26A24, 54C30
Keywords: ${\rm C}^k$ function; spline; ring of quotient; Mollifier function
@article{10_21136_CMJ_2023_0445_21,
     author = {Burgess, Walter D. and Raphael, Robert M.},
     title = {On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {487--498},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0445-21},
     mrnumber = {4586906},
     zbl = {07729519},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0445-21/}
}
TY  - JOUR
AU  - Burgess, Walter D.
AU  - Raphael, Robert M.
TI  - On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 487
EP  - 498
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0445-21/
DO  - 10.21136/CMJ.2023.0445-21
LA  - en
ID  - 10_21136_CMJ_2023_0445_21
ER  - 
%0 Journal Article
%A Burgess, Walter D.
%A Raphael, Robert M.
%T On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications
%J Czechoslovak Mathematical Journal
%D 2023
%P 487-498
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0445-21/
%R 10.21136/CMJ.2023.0445-21
%G en
%F 10_21136_CMJ_2023_0445_21
Burgess, Walter D.; Raphael, Robert M. On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 487-498. doi: 10.21136/CMJ.2023.0445-21

[1] Anderson, D. F., Badawi, A.: Divisibility conditions in commutative rings with zerodivisors. Commun. Algebra 30 (2002), 4031-4047. | DOI | MR | JFM

[2] Azarpanah, F., Ghashghaei, E., Ghoulipour, M.: $C(X)$: Something old and something new. Commun. Algebra 49 (2021), 185-206. | DOI | MR | JFM

[3] Barr, M., Burgess, W. D., Raphael, R.: Ring epimorphisms and $C(X)$. Theory Appl. Categ. 11 (2003), 283-308. | MR | JFM

[4] Barr, M., Kennison, J. F., Raphael, R.: Limit closures of classes of commutative rings. Theory Appl. Categ. 30 (2015), 229-304. | MR | JFM

[5] Blair, R. L., Hager, A. W.: Extensions of zero-sets and real-valued functions. Math. Z. 136 (1974), 41-52. | DOI | MR | JFM

[6] Fine, N. J., Gillman, L., Lambek, J.: Rings of Quotients of Rings of Functions. McGill University Press, Montreal (1966). | MR | JFM

[7] Gillman, L., Jerison, M.: Ring of Continuous Functions. Graduate Texts in Mathematics 43. Springer, New York (1976). | DOI | MR | JFM

[8] Henriksen, M.: Rings of continuous functions from an algebraic point of view. Ordered Algebraic Structures Mathematics and its Applications 55. Kluwer Academic, Dordrecht (1989), 143-174. | DOI | MR | JFM

[9] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1983). | DOI | MR | JFM

[10] Knox, M. L., Levy, R., McGovern, W. W., Shapiro, J.: Generalizations of complemented rings with applications to rings of functions. J. Algebra Appl. 8 (2009), 17-40. | DOI | MR | JFM

[11] Lambek, J.: Lectures on Rings and Modules. Chelsea Publishing, New York (1976). | MR | JFM

[12] Stenström, B.: Rings of Quotients: An Introduction to Methods of Ring Theory. Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). | DOI | MR | JFM

Cité par Sources :