Keywords: ${\rm C}^k$ function; spline; ring of quotient; Mollifier function
@article{10_21136_CMJ_2023_0445_21,
author = {Burgess, Walter D. and Raphael, Robert M.},
title = {On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications},
journal = {Czechoslovak Mathematical Journal},
pages = {487--498},
year = {2023},
volume = {73},
number = {2},
doi = {10.21136/CMJ.2023.0445-21},
mrnumber = {4586906},
zbl = {07729519},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0445-21/}
}
TY - JOUR
AU - Burgess, Walter D.
AU - Raphael, Robert M.
TI - On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications
JO - Czechoslovak Mathematical Journal
PY - 2023
SP - 487
EP - 498
VL - 73
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0445-21/
DO - 10.21136/CMJ.2023.0445-21
LA - en
ID - 10_21136_CMJ_2023_0445_21
ER -
%0 Journal Article
%A Burgess, Walter D.
%A Raphael, Robert M.
%T On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications
%J Czechoslovak Mathematical Journal
%D 2023
%P 487-498
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0445-21/
%R 10.21136/CMJ.2023.0445-21
%G en
%F 10_21136_CMJ_2023_0445_21
Burgess, Walter D.; Raphael, Robert M. On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 487-498. doi: 10.21136/CMJ.2023.0445-21
[1] Anderson, D. F., Badawi, A.: Divisibility conditions in commutative rings with zerodivisors. Commun. Algebra 30 (2002), 4031-4047. | DOI | MR | JFM
[2] Azarpanah, F., Ghashghaei, E., Ghoulipour, M.: $C(X)$: Something old and something new. Commun. Algebra 49 (2021), 185-206. | DOI | MR | JFM
[3] Barr, M., Burgess, W. D., Raphael, R.: Ring epimorphisms and $C(X)$. Theory Appl. Categ. 11 (2003), 283-308. | MR | JFM
[4] Barr, M., Kennison, J. F., Raphael, R.: Limit closures of classes of commutative rings. Theory Appl. Categ. 30 (2015), 229-304. | MR | JFM
[5] Blair, R. L., Hager, A. W.: Extensions of zero-sets and real-valued functions. Math. Z. 136 (1974), 41-52. | DOI | MR | JFM
[6] Fine, N. J., Gillman, L., Lambek, J.: Rings of Quotients of Rings of Functions. McGill University Press, Montreal (1966). | MR | JFM
[7] Gillman, L., Jerison, M.: Ring of Continuous Functions. Graduate Texts in Mathematics 43. Springer, New York (1976). | DOI | MR | JFM
[8] Henriksen, M.: Rings of continuous functions from an algebraic point of view. Ordered Algebraic Structures Mathematics and its Applications 55. Kluwer Academic, Dordrecht (1989), 143-174. | DOI | MR | JFM
[9] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1983). | DOI | MR | JFM
[10] Knox, M. L., Levy, R., McGovern, W. W., Shapiro, J.: Generalizations of complemented rings with applications to rings of functions. J. Algebra Appl. 8 (2009), 17-40. | DOI | MR | JFM
[11] Lambek, J.: Lectures on Rings and Modules. Chelsea Publishing, New York (1976). | MR | JFM
[12] Stenström, B.: Rings of Quotients: An Introduction to Methods of Ring Theory. Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). | DOI | MR | JFM
Cité par Sources :