Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1201-1217
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our aim is to establish Sobolev type inequalities for fractional maximal functions $M_{\mathbb H,\nu }f$ and Riesz potentials $I_{\mathbb H,\alpha }f$ in weighted Morrey spaces of variable exponent on the half space $\mathbb H$. We also obtain Sobolev type inequalities for a $C^1$ function on $\mathbb H$. As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents $\Phi (x,t) = t^{p(x)} + (b(x) t)^{q(x)}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions, $p(x)
Our aim is to establish Sobolev type inequalities for fractional maximal functions $M_{\mathbb H,\nu }f$ and Riesz potentials $I_{\mathbb H,\alpha }f$ in weighted Morrey spaces of variable exponent on the half space $\mathbb H$. We also obtain Sobolev type inequalities for a $C^1$ function on $\mathbb H$. As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents $\Phi (x,t) = t^{p(x)} + (b(x) t)^{q(x)}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions, $p(x)$ for $x \in {\mathbb H} $, and $b(\cdot )$ is nonnegative and Hölder continuous of order $\theta \in (0,1]$.
DOI : 10.21136/CMJ.2023.0442-22
Classification : 31B15, 42B25, 46E30
Keywords: variable exponent; fractional maximal function; Riesz potential; Sobolev's inequality; weighted Morrey space; double phase functional
@article{10_21136_CMJ_2023_0442_22,
     author = {Mizuta, Yoshihiro and Shimomura, Tetsu},
     title = {Sobolev type inequalities for fractional maximal functions and {Riesz} potentials in {Morrey} spaces of variable exponent on half spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1201--1217},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0442-22},
     zbl = {07790569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0442-22/}
}
TY  - JOUR
AU  - Mizuta, Yoshihiro
AU  - Shimomura, Tetsu
TI  - Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1201
EP  - 1217
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0442-22/
DO  - 10.21136/CMJ.2023.0442-22
LA  - en
ID  - 10_21136_CMJ_2023_0442_22
ER  - 
%0 Journal Article
%A Mizuta, Yoshihiro
%A Shimomura, Tetsu
%T Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
%J Czechoslovak Mathematical Journal
%D 2023
%P 1201-1217
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0442-22/
%R 10.21136/CMJ.2023.0442-22
%G en
%F 10_21136_CMJ_2023_0442_22
Mizuta, Yoshihiro; Shimomura, Tetsu. Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1201-1217. doi: 10.21136/CMJ.2023.0442-22

[1] Adams, D. R.: A note on Riesz potentials. Duke Math. J. 42 (1975), 765-778. | DOI | MR | JFM

[2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1995). | DOI | MR | JFM

[3] Almeida, A., Hasanov, J., Samko, S.: Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 15 (2008), 195-208. | DOI | MR | JFM

[4] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersbg. Math. J. 27 (2016), 347-379. | DOI | MR | JFM

[5] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. | DOI | MR | JFM

[6] Byun, S.-S., Lee, H.-S.: Calderón-Zygmund estimates for elliptic double phase problems with variable exponents. J. Math. Anal. Appl. 501 (2021), Article ID 124015, 31 pages. | DOI | MR | JFM

[7] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. | DOI | MR | JFM

[8] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218 (2015), 219-273. | DOI | MR | JFM

[9] Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015), 443-496. | DOI | MR | JFM

[10] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). | DOI | MR | JFM

[11] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 394 (2012), 744-760. | DOI | MR | JFM

[12] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM

[13] Fazio, G. Di, Ragusa, M. A.: Commutators and Morrey spaces. Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 323-332. | MR | JFM

[14] Haj{ł}asz, P., Koskela, P.: Sobolev Met Poincaré. Memoirs of the American Mathematical Society 688. AMS, Providence (2000). | DOI | MR | JFM

[15] Hästö, P., Ok, J.: Calderón-Zygmund estimates in generalized Orlicz spaces. J. Differ. Equations 267 (2019), 2792-2823. | DOI | MR | JFM

[16] Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine Angew. Math. 503 (1998), 161-167. | DOI | MR | JFM

[17] Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35 (2003), 529-535. | DOI | MR | JFM

[18] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 76-96. | DOI | MR | JFM

[19] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents. Forum Math. 31 (2019), 517-527. | DOI | MR | JFM

[20] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents. Complex Var. Elliptic Equ. 56 (2011), 671-695. | DOI | MR | JFM

[21] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in $\Bbb R^n$. Rev. Mat. Complut. 25 (2012), 413-434. | DOI | MR | JFM

[22] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Campanato-Morrey spaces for the double phase functionals with variable exponents. Nonlinear Anal., Theory Methods Appl., Ser. A 197 (2020), Article ID 111827, 18 pages. | DOI | MR | JFM

[23] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequalities for Herz-Morrey-Orlicz spaces on the half space. Math. Inequal. Appl. 21 (2018), 433-453. | DOI | MR | JFM

[24] Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of fractional maximal operators for double phase functionals with variable exponents. J. Math. Anal. Appl. 501 (2021), Article ID 124360, 16 pages. | DOI | MR | JFM

[25] Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent. J. Math. Soc. Japan 60 (2008), 583-602. | DOI | MR | JFM

[26] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities in the unit ball for double phase functionals. J. Math. Anal. Appl. 501 (2021), Article ID 124133, 17 pages. | DOI | MR | JFM

[27] Mizuta, Y., Shimomura, T.: Sobolev type inequalities for fractional maximal functions and Green potentials in half spaces. Positivity 25 (2021), 1131-1146. | DOI | MR | JFM

[28] Mizuta, Y., Shimomura, T.: Boundedness of fractional integral operators in Herz spaces on the hyperplane. Math. Methods Appl. Sci. 45 (2022), 8631-8654. | DOI | MR

[29] Mizuta, Y., Shimomura, T.: Sobolev type inequalities for fractional maximal functions and Riesz potentials in half spaces. Available at , 22 pages. | arXiv | MR

[30] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. | DOI | MR | JFM

[31] Ragusa, M. A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9 (2020), 710-728. | DOI | MR | JFM

[32] Sawano, Y., Shimomura, T.: Fractional maximal operator on Musielak-Orlicz spaces over unbounded quasi-metric measure spaces. Result. Math. 76 (2021), Article ID 188, 22 pages. | DOI | MR | JFM

Cité par Sources :