Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1175-1188
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Standard algorithms for numerical integration are defined for simple integrals. Formulas for computation of repeated integrals and derivatives for equidistant domain partition based on modified Newton-Cotes formulas are derived. We compare usage of the new formulas with the classical quadrature formulas and discuss possible application of the results to solving higher order differential equations.
Standard algorithms for numerical integration are defined for simple integrals. Formulas for computation of repeated integrals and derivatives for equidistant domain partition based on modified Newton-Cotes formulas are derived. We compare usage of the new formulas with the classical quadrature formulas and discuss possible application of the results to solving higher order differential equations.
DOI : 10.21136/CMJ.2023.0437-22
Classification : 65D32
Keywords: repeated integral; Cauchy formula for repeated integration; quadrature; cubature; numerical differentiation
@article{10_21136_CMJ_2023_0437_22,
     author = {Tvrd\'a, Katar{\'\i}na and Novotn\'y, Peter},
     title = {Modifications of {Newton-Cotes} formulas for computation of repeated integrals and derivatives},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1175--1188},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0437-22},
     zbl = {07790567},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0437-22/}
}
TY  - JOUR
AU  - Tvrdá, Katarína
AU  - Novotný, Peter
TI  - Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1175
EP  - 1188
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0437-22/
DO  - 10.21136/CMJ.2023.0437-22
LA  - en
ID  - 10_21136_CMJ_2023_0437_22
ER  - 
%0 Journal Article
%A Tvrdá, Katarína
%A Novotný, Peter
%T Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives
%J Czechoslovak Mathematical Journal
%D 2023
%P 1175-1188
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0437-22/
%R 10.21136/CMJ.2023.0437-22
%G en
%F 10_21136_CMJ_2023_0437_22
Tvrdá, Katarína; Novotný, Peter. Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1175-1188. doi: 10.21136/CMJ.2023.0437-22

[1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. U.S. Department of Commerce, Washington (1964). | MR | JFM

[2] Bauchau, O. A., Craig, J. I.: Euler-Bernoulli beam theory. Structural Analysis Solid Mechanics and Its Applications 163. Springer, Dordrecht (2009), 173-221. | DOI

[3] Burden, R. L., Faires, J. D.: Numerical Analysis. PWS Publishing Company, Boston (1993). | JFM

[4] Folland, G. B.: Advanced Calculus. Prentice Hall, Hoboken (2001).

[5] Holoborodko, P.: Stable Newton-Cotes Formulas. Available at \brokenlink{ http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/{stable-newton-cotes-formulas/}}

[6] Janečka, A., Průša, V., Rajagopal, K. R.: Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range. Arch. Mech. 68 (2016), 3-25. | MR | JFM

[7] Selvam, V. K. M., Bindhu, K. R.: Application of double integration method and the Maxwell-Betti theorem for finding deflection in determinate flexural frames: A supplement note. J. Struct. Eng. 41 (2014), 420-431.

[8] Tvrdá, K.: Solution of a high bridge pillar under wind effects taking into account the real properties of reinforced concrete. MATEC Web Conf. 313 (2020), 6 pages. | DOI

[9] Tvrdá, K., Minárová, M.: Computation of definite integral over repeated integral. Tatra Mt. Math. Publ. 72 (2018), 141-154. | DOI | MR | JFM

Cité par Sources :