Keywords: repeated integral; Cauchy formula for repeated integration; quadrature; cubature; numerical differentiation
@article{10_21136_CMJ_2023_0437_22,
author = {Tvrd\'a, Katar{\'\i}na and Novotn\'y, Peter},
title = {Modifications of {Newton-Cotes} formulas for computation of repeated integrals and derivatives},
journal = {Czechoslovak Mathematical Journal},
pages = {1175--1188},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0437-22},
zbl = {07790567},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0437-22/}
}
TY - JOUR AU - Tvrdá, Katarína AU - Novotný, Peter TI - Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1175 EP - 1188 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0437-22/ DO - 10.21136/CMJ.2023.0437-22 LA - en ID - 10_21136_CMJ_2023_0437_22 ER -
%0 Journal Article %A Tvrdá, Katarína %A Novotný, Peter %T Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives %J Czechoslovak Mathematical Journal %D 2023 %P 1175-1188 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0437-22/ %R 10.21136/CMJ.2023.0437-22 %G en %F 10_21136_CMJ_2023_0437_22
Tvrdá, Katarína; Novotný, Peter. Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1175-1188. doi: 10.21136/CMJ.2023.0437-22
[1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. U.S. Department of Commerce, Washington (1964). | MR | JFM
[2] Bauchau, O. A., Craig, J. I.: Euler-Bernoulli beam theory. Structural Analysis Solid Mechanics and Its Applications 163. Springer, Dordrecht (2009), 173-221. | DOI
[3] Burden, R. L., Faires, J. D.: Numerical Analysis. PWS Publishing Company, Boston (1993). | JFM
[4] Folland, G. B.: Advanced Calculus. Prentice Hall, Hoboken (2001).
[5] Holoborodko, P.: Stable Newton-Cotes Formulas. Available at \brokenlink{ http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/{stable-newton-cotes-formulas/}}
[6] Janečka, A., Průša, V., Rajagopal, K. R.: Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range. Arch. Mech. 68 (2016), 3-25. | MR | JFM
[7] Selvam, V. K. M., Bindhu, K. R.: Application of double integration method and the Maxwell-Betti theorem for finding deflection in determinate flexural frames: A supplement note. J. Struct. Eng. 41 (2014), 420-431.
[8] Tvrdá, K.: Solution of a high bridge pillar under wind effects taking into account the real properties of reinforced concrete. MATEC Web Conf. 313 (2020), 6 pages. | DOI
[9] Tvrdá, K., Minárová, M.: Computation of definite integral over repeated integral. Tatra Mt. Math. Publ. 72 (2018), 141-154. | DOI | MR | JFM
Cité par Sources :