Tensor products of higher almost split sequences in subcategories
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1151-1174 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the algebras satisfying the $(\mathcal B,n)$ condition. If $\Lambda $, $\Gamma $ are algebras satisfying the $(\mathcal B,n)$, $(\mathcal E,m)$ condition, respectively, we give a construction of $(m+n)$-almost split sequences in some subcategories $(\mathcal B\otimes \mathcal E)^{(i_0, j_0)}$ of $\mod (\Lambda \otimes \Gamma )$ by tensor products and mapping cones. Moreover, we prove that the tensor product algebra $\Lambda \otimes \Gamma $ satisfies the $((\mathcal B\otimes \mathcal E)^{(i_0, j_0)},n+m)$ condition for some integers $i_0$, $j_0$; this construction unifies and extends the work of A. Pasquali (2017), (2019).
We introduce the algebras satisfying the $(\mathcal B,n)$ condition. If $\Lambda $, $\Gamma $ are algebras satisfying the $(\mathcal B,n)$, $(\mathcal E,m)$ condition, respectively, we give a construction of $(m+n)$-almost split sequences in some subcategories $(\mathcal B\otimes \mathcal E)^{(i_0, j_0)}$ of $\mod (\Lambda \otimes \Gamma )$ by tensor products and mapping cones. Moreover, we prove that the tensor product algebra $\Lambda \otimes \Gamma $ satisfies the $((\mathcal B\otimes \mathcal E)^{(i_0, j_0)},n+m)$ condition for some integers $i_0$, $j_0$; this construction unifies and extends the work of A. Pasquali (2017), (2019).
DOI : 10.21136/CMJ.2023.0432-22
Classification : 16D90, 16G10, 16G70
Keywords: $n$-representation finite algebra; higher almost split sequence; tensor product; mapping cone
@article{10_21136_CMJ_2023_0432_22,
     author = {Lu, Xiaojian and Luo, Deren},
     title = {Tensor products of higher almost split sequences in subcategories},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1151--1174},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0432-22},
     zbl = {07790566},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0432-22/}
}
TY  - JOUR
AU  - Lu, Xiaojian
AU  - Luo, Deren
TI  - Tensor products of higher almost split sequences in subcategories
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1151
EP  - 1174
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0432-22/
DO  - 10.21136/CMJ.2023.0432-22
LA  - en
ID  - 10_21136_CMJ_2023_0432_22
ER  - 
%0 Journal Article
%A Lu, Xiaojian
%A Luo, Deren
%T Tensor products of higher almost split sequences in subcategories
%J Czechoslovak Mathematical Journal
%D 2023
%P 1151-1174
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0432-22/
%R 10.21136/CMJ.2023.0432-22
%G en
%F 10_21136_CMJ_2023_0432_22
Lu, Xiaojian; Luo, Deren. Tensor products of higher almost split sequences in subcategories. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1151-1174. doi: 10.21136/CMJ.2023.0432-22

[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[2] Auslander, M., Reiten, I.: Representation theory of Artin algebras. III. Almost split sequences. Commun. Algebra 3 (1975), 239-294. | DOI | MR | JFM

[3] Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV. Invariants given by almost split sequences. Commun. Algebra 5 (1977), 443-518. | DOI | MR | JFM

[4] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[5] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Mathematical Series 19. Princeton University Press, Princeton (1956). | MR | JFM

[6] Darpö, E., Iyama, O.: $d$-representation-finite self-injective algebras. Adv. Math. 362 (2020), Article ID 106932, 50 pages. | DOI | MR | JFM

[7] Gelfand, S. I., Manin, Y. I.: Methods of Homological Algebra. Springer Monographs in Mathematics. Springer, Berlin (2003). | DOI | MR | JFM

[8] Guo, J. Y.: On $n$-translation algebras. J. Algebra 453 (2016), 400-428. | DOI | MR | JFM

[9] Guo, J. Y., Lu, X., Luo, D.: $\Bbb Z Q$ type constructions in higher representation theory. Available at , 26 pages. | arXiv

[10] Herschend, M., Iyama, O.: $n$-representation-finite algebras and twisted fractionally Calabi-Yau algebras. Bull. Lond. Math. Soc. 43 (2011), 449-466. | DOI | MR | JFM

[11] Herschend, M., Iyama, O., Oppermann, S.: $n$-representation infinite algebras. Adv. Math. 252 (2014), 292-342. | DOI | MR | JFM

[12] Iyama, O.: Auslander correspondence. Adv. Math. 210 (2007), 51-82. | DOI | MR | JFM

[13] Iyama, O.: Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math. 210 (2007), 22-50. | DOI | MR | JFM

[14] Iyama, O.: Auslander-Reiten theory revisited. Trends in Representation Theory of Algebras and Related Topics EMS Series of Congress Reports. EMS, Zürich (2008), 349-397. | DOI | MR | JFM

[15] Iyama, O.: Cluster tilting for higher Auslander algebras. Adv. Math. 226 (2011), 1-61. | DOI | MR | JFM

[16] Iyama, O., Oppermann, S.: $n$-representation-finite algebras and $n$-APR tilting. Trans. Am. Math. Soc. 363 (2011), 6575-6614. | DOI | MR | JFM

[17] Lawrence, J.: When is the tensor product of algebras local? II. Proc. Am. Math. Soc. 58 (1976), 22-24. | DOI | MR | JFM

[18] Pasquali, A.: Tensor products of higher almost split sequences. J. Pure Appl. Algebra 221 (2017), 645-665. | DOI | MR | JFM

[19] Pasquali, A.: Tensor products of $n$-complete algebras. J. Pure Appl. Algebra 223 (2019), 3537-3553 \99999DOI99999 10.1016/j.jpaa.2018.11.016 . | DOI | MR | JFM

Cité par Sources :