Keywords: hypergeometric series; Bailey's cubic transformation; contiguous relation; reversal series; binomial coefficient
@article{10_21136_CMJ_2023_0429_22,
author = {Chu, Wenchang},
title = {Binomial sums via {Bailey's} cubic transformation},
journal = {Czechoslovak Mathematical Journal},
pages = {1131--1150},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0429-22},
zbl = {07790565},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0429-22/}
}
TY - JOUR AU - Chu, Wenchang TI - Binomial sums via Bailey's cubic transformation JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1131 EP - 1150 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0429-22/ DO - 10.21136/CMJ.2023.0429-22 LA - en ID - 10_21136_CMJ_2023_0429_22 ER -
Chu, Wenchang. Binomial sums via Bailey's cubic transformation. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1131-1150. doi: 10.21136/CMJ.2023.0429-22
[1] Bailey, W. N.: Products of generalized hypergeometric series. Proc. Lond. Math. Soc. (2) 28 (1928), 242-254 \99999JFM99999 54.0392.04. | DOI | MR
[2] Bailey, W. N.: Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics 32. Cambridge University Press, Cambridge (1935). | MR | JFM
[3] Campbell, J. M.: Solution to a problem due to Chu and Kiliç. Integers 22 (2022), Article ID A46, 8 pages. | MR | JFM
[4] Chen, X., Chu, W.: Closed formulae for a class of terminating $_3F_2(4)$-series. Integral Transform Spec. Funct. 28 (2017), 825-837. | DOI | MR | JFM
[5] Chu, W.: Inversion techniques and combinatorial identities: A quick introduction to hypergeometric evaluations. Runs and Patterns in Probability Mathematics and its Applications 283. Kluwer, Dordrecht (1994), 31-57. | MR | JFM
[6] Chu, W.: Inversion techniques and combinatorial identities: Balanced hypergeometric series. Rocky Mt. J. Math. 32 (2002), 561-587. | DOI | MR | JFM
[7] Chu, W.: Terminating $_2F_1(4)$-series perturbed by two integer parameters. Proc. Am. Math. Soc. 145 (2017), 1031-1040. | DOI | MR | JFM
[8] Chu, W.: Further identities on Catalan numbers. Discrete Math. 341 (2018), 3159-3164. | DOI | MR | JFM
[9] Chu, W.: Alternating convolutions of Catalan numbers. Bull. Braz. Math. Soc. (N.S.) 53 (2022), 95-105. | DOI | MR | JFM
[10] Chu, W., Kiliç, E.: Binomial sums involving Catalan numbers. Rocky Mt. J. Math. 51 (2021), 1221-1225. | DOI | MR | JFM
[11] Gessel, I. M.: Finding identities with the WZ method. J. Symb. Comput. 20 (1995), 537-566. | DOI | MR | JFM
[12] Gessel, I. M., Stanton, D.: Strange evaluations of hypergeometric series. SIAM J. Math. Anal. 13 (1982), 295-308. | DOI | MR | JFM
[13] Mikić, J.: Two new identities involving the Catalan numbers and sign-reversing involutions. J. Integer Seq. 22 (2019), Article ID 19.7.7, 10 pages. | MR | JFM
[14] Zeilberger, D.: Forty ``strange" computer-discovered and computer-proved (of course) hypergeometric series evaluations. Available at {\def\let \relax \brokenlink{ https://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/strange.html}}\kern0pt (2004).
[15] Zhou, R. R., Chu, W.: Identities on extended Catalan numbers and their $q$-analogs. Graphs Comb. 32 (2016), 2183-2197. | DOI | MR | JFM
Cité par Sources :