Binomial sums via Bailey's cubic transformation
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1131-1150
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
By employing one of the cubic transformations (due to W. N. Bailey (1928)) for the $_3F_2(x)$-series, we examine a class of $_3F_2(4)$-series. Several closed formulae are established by means of differentiation, integration and contiguous relations. As applications, some remarkable binomial sums are explicitly evaluated, including one proposed recently as an open problem.
Classification :
05A19, 11B65, 33C20
Keywords: hypergeometric series; Bailey's cubic transformation; contiguous relation; reversal series; binomial coefficient
Keywords: hypergeometric series; Bailey's cubic transformation; contiguous relation; reversal series; binomial coefficient
@article{10_21136_CMJ_2023_0429_22,
author = {Chu, Wenchang},
title = {Binomial sums via {Bailey's} cubic transformation},
journal = {Czechoslovak Mathematical Journal},
pages = {1131--1150},
publisher = {mathdoc},
volume = {73},
number = {4},
year = {2023},
doi = {10.21136/CMJ.2023.0429-22},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0429-22/}
}
TY - JOUR AU - Chu, Wenchang TI - Binomial sums via Bailey's cubic transformation JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1131 EP - 1150 VL - 73 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0429-22/ DO - 10.21136/CMJ.2023.0429-22 LA - en ID - 10_21136_CMJ_2023_0429_22 ER -
Chu, Wenchang. Binomial sums via Bailey's cubic transformation. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1131-1150. doi: 10.21136/CMJ.2023.0429-22
Cité par Sources :