Binomial sums via Bailey's cubic transformation
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1131-1150.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By employing one of the cubic transformations (due to W. N. Bailey (1928)) for the $_3F_2(x)$-series, we examine a class of $_3F_2(4)$-series. Several closed formulae are established by means of differentiation, integration and contiguous relations. As applications, some remarkable binomial sums are explicitly evaluated, including one proposed recently as an open problem.
DOI : 10.21136/CMJ.2023.0429-22
Classification : 05A19, 11B65, 33C20
Keywords: hypergeometric series; Bailey's cubic transformation; contiguous relation; reversal series; binomial coefficient
@article{10_21136_CMJ_2023_0429_22,
     author = {Chu, Wenchang},
     title = {Binomial sums via {Bailey's} cubic transformation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1131--1150},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2023},
     doi = {10.21136/CMJ.2023.0429-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0429-22/}
}
TY  - JOUR
AU  - Chu, Wenchang
TI  - Binomial sums via Bailey's cubic transformation
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1131
EP  - 1150
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0429-22/
DO  - 10.21136/CMJ.2023.0429-22
LA  - en
ID  - 10_21136_CMJ_2023_0429_22
ER  - 
%0 Journal Article
%A Chu, Wenchang
%T Binomial sums via Bailey's cubic transformation
%J Czechoslovak Mathematical Journal
%D 2023
%P 1131-1150
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0429-22/
%R 10.21136/CMJ.2023.0429-22
%G en
%F 10_21136_CMJ_2023_0429_22
Chu, Wenchang. Binomial sums via Bailey's cubic transformation. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1131-1150. doi : 10.21136/CMJ.2023.0429-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0429-22/

Cité par Sources :