Keywords: CKV-type B-matrix; P-matrix; real eigenvalues localization
@article{10_21136_CMJ_2023_0420_22,
author = {Wang, Yinghua and Song, Xinnian and Gao, Lei},
title = {A new inclusion interval for the real eigenvalues of real matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {979--992},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0420-22},
mrnumber = {4632870},
zbl = {07729550},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0420-22/}
}
TY - JOUR AU - Wang, Yinghua AU - Song, Xinnian AU - Gao, Lei TI - A new inclusion interval for the real eigenvalues of real matrices JO - Czechoslovak Mathematical Journal PY - 2023 SP - 979 EP - 992 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0420-22/ DO - 10.21136/CMJ.2023.0420-22 LA - en ID - 10_21136_CMJ_2023_0420_22 ER -
%0 Journal Article %A Wang, Yinghua %A Song, Xinnian %A Gao, Lei %T A new inclusion interval for the real eigenvalues of real matrices %J Czechoslovak Mathematical Journal %D 2023 %P 979-992 %V 73 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0420-22/ %R 10.21136/CMJ.2023.0420-22 %G en %F 10_21136_CMJ_2023_0420_22
Wang, Yinghua; Song, Xinnian; Gao, Lei. A new inclusion interval for the real eigenvalues of real matrices. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 979-992. doi: 10.21136/CMJ.2023.0420-22
[1] Brauer, A.: Limits for the characteristic roots of a matrix. II. Duke Math. J. 14 (1947), 21-26. | DOI | MR | JFM
[2] Cvetkovic, L., Kostic, V., Varga, R. S.: A new Geršgorin-type eigenvalue inclusion set. ETNA, Electron. Trans. Numer. Anal. 18 (2004), 73-80. | MR | JFM
[3] Chen, X., Xiang, S.: Computation of error bounds for $P$-matrix linear complementarity problems. Math. Program. 106 (2006), 513-525. | DOI | MR | JFM
[4] Wang, Y., Song, X., Gao, L.: CKV-type-B-code. Available at \brokenlink{ https://github.com/{gaolei11712/CKV-type-B-code.git}}
[5] Cvetković, D. L., Cvetković, L., Li, C.: CKV-type matrices with applications. Linear Algebra Appl. 608 (2021), 158-184. | DOI | MR | JFM
[6] Fallat, S. M., Johnson, C. R.: Sub-direct sums and positivity classes of matrices. Linear Algebra Appl. 288 (1999), 149-173. | DOI | MR | JFM
[7] Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors. Czech. Math. J. 12 (1962), 382-400. | DOI | MR | JFM
[8] Gershgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR, Otd. Mat. Estest. Nauk, VII. Ser. 6 (1931), 749-754 Russian. | JFM
[9] Li, H.-B., Huang, T.-Z., Li, H.: On some subclasses of $P$-matrices. Numer. Linear Algebra Appl. 14 (2007), 391-405. | DOI | MR | JFM
[10] Li, C., Li, Y.: Double $B$-tensors and quasi-double $B$-tensors. Linear Algebra Appl. 466 (2015), 343-356. | DOI | MR | JFM
[11] Li, C., Liu, Q., Li, Y.: Geršgorin-type and Brauer-type eigenvalue localization sets of stochastic matrices. Linear Multilinear Algebra 63 (2015), 2159-2170. | DOI | MR | JFM
[12] Li, C., Wang, F., Zhao, J., Zhu, Y., Li, Y.: Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math. 255 (2014), 1-14. | DOI | MR | JFM
[13] Liu, J., Zhang, J., Liu, Y.: The Schur complement of strictly doubly diagonally dominant matrices and its application. Linear Algebra Appl. 437 (2012), 168-183. | DOI | MR | JFM
[14] Peña, J. M.: A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22 (2001), 1027-1037. | DOI | MR | JFM
[15] Peña, J. M.: On an alternative to Gerschgorin circles and ovals of Cassini. Numer. Math. 95 (2003), 337-345. | DOI | MR | JFM
[16] Peña, J. M.: Exclusion and inclusion intervals for the real eigenvalues of positive matrices. SIAM J. Matrix Anal. Appl. 26 (2005), 908-917. | DOI | MR | JFM
[17] Shen, S.-Q., Huang, T.-Z., Jing, Y.-F.: On inclusion and exclusion intervals for the real eigenvalues of real matrices. SIAM J. Matrix Anal. Appl. 31 (2009), 816-830. | DOI | MR | JFM
[18] Song, X., Gao, L.: CKV-type $B$-matrices and error bounds for linear complementarity problems. AIMS Math. 6 (2021), 10846-10860. | DOI | MR | JFM
[19] Varga, R. S.: Geršgorin-type eigenvalue inclusion theorems and their sharpness. ETNA, Electron. Trans. Numer. Anal. 12 (2001), 113-133. | MR | JFM
[20] Varga, R. S.: Geršgorin and His Circles. Springer Series in Computational Mathematics 36. Springer, Berlin (2004). | DOI | MR | JFM
[21] Zhao, J., Liu, Q., Li, C., Li, Y.: Dashnic-Zusmanovich type matrices: A new subclass of nonsingular $H$-matrices. Linear Algebra Appl. 552 (2018), 277-287. | DOI | MR | JFM
Cité par Sources :