A new inclusion interval for the real eigenvalues of real matrices
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 979-992
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By properties of Cvetković-Kostić-Varga-type (or, for short, CKV-type) \hbox {B-matrices}, a new class of nonsingular matrices called CKV-type $\overline {\text {B}}$-matrices is given, and a new inclusion interval of the real eigenvalues of real matrices is presented. It is shown that the new inclusion interval is sharper than those provided by J. M. Peña (2003), and by H. B. Li et al. (2007). We also propose a direct algorithm for computing the new inclusion interval. Numerical examples are included to illustrate the effectiveness of the obtained results.
By properties of Cvetković-Kostić-Varga-type (or, for short, CKV-type) \hbox {B-matrices}, a new class of nonsingular matrices called CKV-type $\overline {\text {B}}$-matrices is given, and a new inclusion interval of the real eigenvalues of real matrices is presented. It is shown that the new inclusion interval is sharper than those provided by J. M. Peña (2003), and by H. B. Li et al. (2007). We also propose a direct algorithm for computing the new inclusion interval. Numerical examples are included to illustrate the effectiveness of the obtained results.
DOI : 10.21136/CMJ.2023.0420-22
Classification : 15A18, 15B48, 65F15
Keywords: CKV-type B-matrix; P-matrix; real eigenvalues localization
@article{10_21136_CMJ_2023_0420_22,
     author = {Wang, Yinghua and Song, Xinnian and Gao, Lei},
     title = {A new inclusion interval for the real eigenvalues of real matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {979--992},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0420-22},
     mrnumber = {4632870},
     zbl = {07729550},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0420-22/}
}
TY  - JOUR
AU  - Wang, Yinghua
AU  - Song, Xinnian
AU  - Gao, Lei
TI  - A new inclusion interval for the real eigenvalues of real matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 979
EP  - 992
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0420-22/
DO  - 10.21136/CMJ.2023.0420-22
LA  - en
ID  - 10_21136_CMJ_2023_0420_22
ER  - 
%0 Journal Article
%A Wang, Yinghua
%A Song, Xinnian
%A Gao, Lei
%T A new inclusion interval for the real eigenvalues of real matrices
%J Czechoslovak Mathematical Journal
%D 2023
%P 979-992
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0420-22/
%R 10.21136/CMJ.2023.0420-22
%G en
%F 10_21136_CMJ_2023_0420_22
Wang, Yinghua; Song, Xinnian; Gao, Lei. A new inclusion interval for the real eigenvalues of real matrices. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 979-992. doi: 10.21136/CMJ.2023.0420-22

[1] Brauer, A.: Limits for the characteristic roots of a matrix. II. Duke Math. J. 14 (1947), 21-26. | DOI | MR | JFM

[2] Cvetkovic, L., Kostic, V., Varga, R. S.: A new Geršgorin-type eigenvalue inclusion set. ETNA, Electron. Trans. Numer. Anal. 18 (2004), 73-80. | MR | JFM

[3] Chen, X., Xiang, S.: Computation of error bounds for $P$-matrix linear complementarity problems. Math. Program. 106 (2006), 513-525. | DOI | MR | JFM

[4] Wang, Y., Song, X., Gao, L.: CKV-type-B-code. Available at \brokenlink{ https://github.com/{gaolei11712/CKV-type-B-code.git}}

[5] Cvetković, D. L., Cvetković, L., Li, C.: CKV-type matrices with applications. Linear Algebra Appl. 608 (2021), 158-184. | DOI | MR | JFM

[6] Fallat, S. M., Johnson, C. R.: Sub-direct sums and positivity classes of matrices. Linear Algebra Appl. 288 (1999), 149-173. | DOI | MR | JFM

[7] Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors. Czech. Math. J. 12 (1962), 382-400. | DOI | MR | JFM

[8] Gershgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR, Otd. Mat. Estest. Nauk, VII. Ser. 6 (1931), 749-754 Russian. | JFM

[9] Li, H.-B., Huang, T.-Z., Li, H.: On some subclasses of $P$-matrices. Numer. Linear Algebra Appl. 14 (2007), 391-405. | DOI | MR | JFM

[10] Li, C., Li, Y.: Double $B$-tensors and quasi-double $B$-tensors. Linear Algebra Appl. 466 (2015), 343-356. | DOI | MR | JFM

[11] Li, C., Liu, Q., Li, Y.: Geršgorin-type and Brauer-type eigenvalue localization sets of stochastic matrices. Linear Multilinear Algebra 63 (2015), 2159-2170. | DOI | MR | JFM

[12] Li, C., Wang, F., Zhao, J., Zhu, Y., Li, Y.: Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math. 255 (2014), 1-14. | DOI | MR | JFM

[13] Liu, J., Zhang, J., Liu, Y.: The Schur complement of strictly doubly diagonally dominant matrices and its application. Linear Algebra Appl. 437 (2012), 168-183. | DOI | MR | JFM

[14] Peña, J. M.: A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22 (2001), 1027-1037. | DOI | MR | JFM

[15] Peña, J. M.: On an alternative to Gerschgorin circles and ovals of Cassini. Numer. Math. 95 (2003), 337-345. | DOI | MR | JFM

[16] Peña, J. M.: Exclusion and inclusion intervals for the real eigenvalues of positive matrices. SIAM J. Matrix Anal. Appl. 26 (2005), 908-917. | DOI | MR | JFM

[17] Shen, S.-Q., Huang, T.-Z., Jing, Y.-F.: On inclusion and exclusion intervals for the real eigenvalues of real matrices. SIAM J. Matrix Anal. Appl. 31 (2009), 816-830. | DOI | MR | JFM

[18] Song, X., Gao, L.: CKV-type $B$-matrices and error bounds for linear complementarity problems. AIMS Math. 6 (2021), 10846-10860. | DOI | MR | JFM

[19] Varga, R. S.: Geršgorin-type eigenvalue inclusion theorems and their sharpness. ETNA, Electron. Trans. Numer. Anal. 12 (2001), 113-133. | MR | JFM

[20] Varga, R. S.: Geršgorin and His Circles. Springer Series in Computational Mathematics 36. Springer, Berlin (2004). | DOI | MR | JFM

[21] Zhao, J., Liu, Q., Li, C., Li, Y.: Dashnic-Zusmanovich type matrices: A new subclass of nonsingular $H$-matrices. Linear Algebra Appl. 552 (2018), 277-287. | DOI | MR | JFM

Cité par Sources :