Some homological properties of amalgamated modules along an ideal
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 475-486
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \to S$ be a ring homomorphism, $M$ be an $R$-module, $N$ be an $S$-module, and let $\varphi \colon M \to N$ be an $R$-homomorphism. The amalgamation of $R$ with $S$ along $J$ with respect to $f$ denoted by $R \bowtie ^{f} J$ was introduced by M. D'Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of $(R \bowtie ^{f} J)$-module called the amalgamation of $M$ and $N$ along $J$ with respect to $\varphi $, and denoted by $M \bowtie ^{\varphi } JN$. We study some homological properties of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$. Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$ in connection to their corresponding properties of the $R$-modules $M$ and $JN$.
Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \to S$ be a ring homomorphism, $M$ be an $R$-module, $N$ be an $S$-module, and let $\varphi \colon M \to N$ be an $R$-homomorphism. The amalgamation of $R$ with $S$ along $J$ with respect to $f$ denoted by $R \bowtie ^{f} J$ was introduced by M. D'Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of $(R \bowtie ^{f} J)$-module called the amalgamation of $M$ and $N$ along $J$ with respect to $\varphi $, and denoted by $M \bowtie ^{\varphi } JN$. We study some homological properties of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$. Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$ in connection to their corresponding properties of the $R$-modules $M$ and $JN$.
DOI : 10.21136/CMJ.2023.0411-21
Classification : 13A15, 13C10, 13C11, 13C14, 13C15
Keywords: amalgamation of ring; amalgamation of module; Cohen-Macaulay; injective module; projective(flat) module
@article{10_21136_CMJ_2023_0411_21,
     author = {Shoar, Hanieh and Salimi, Maryam and Tehranian, Abolfazl and Rasouli, Hamid and Tavasoli, Elham},
     title = {Some homological properties of amalgamated modules along an ideal},
     journal = {Czechoslovak Mathematical Journal},
     pages = {475--486},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0411-21},
     mrnumber = {4586905},
     zbl = {07729518},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0411-21/}
}
TY  - JOUR
AU  - Shoar, Hanieh
AU  - Salimi, Maryam
AU  - Tehranian, Abolfazl
AU  - Rasouli, Hamid
AU  - Tavasoli, Elham
TI  - Some homological properties of amalgamated modules along an ideal
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 475
EP  - 486
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0411-21/
DO  - 10.21136/CMJ.2023.0411-21
LA  - en
ID  - 10_21136_CMJ_2023_0411_21
ER  - 
%0 Journal Article
%A Shoar, Hanieh
%A Salimi, Maryam
%A Tehranian, Abolfazl
%A Rasouli, Hamid
%A Tavasoli, Elham
%T Some homological properties of amalgamated modules along an ideal
%J Czechoslovak Mathematical Journal
%D 2023
%P 475-486
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0411-21/
%R 10.21136/CMJ.2023.0411-21
%G en
%F 10_21136_CMJ_2023_0411_21
Shoar, Hanieh; Salimi, Maryam; Tehranian, Abolfazl; Rasouli, Hamid; Tavasoli, Elham. Some homological properties of amalgamated modules along an ideal. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 475-486. doi: 10.21136/CMJ.2023.0411-21

[1] Bouba, E. M., Mahdou, N., Tamekkante, M.: Duplication of a module along an ideal. Acta Math. Hung. 154 (2018), 29-42. | DOI | MR | JFM

[2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[3] D'Anna, M.: A construction of Gorenstein rings. J. Algebra 306 (2006), 507-519. | DOI | MR | JFM

[4] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal. Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. | DOI | MR | JFM

[5] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. | DOI | MR | JFM

[6] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties. J. Algebra Appl. 6 (2007), 443-459. | DOI | MR | JFM

[7] D'Anna, M., Fontana, M.: The amalgamated duplication of a ring along a multiplicative-cannonical ideal. Ark. Mat. 45 (2007), 241-252. | DOI | MR | JFM

[8] Khalfaoui, R. El, Mahdou, N., Sahandi, P., Shirmohammadi, N.: Amalgamated modules along an ideal. Commun. Korean Math. Soc. 36 (2021), 1-10. | DOI | MR | JFM

[9] Enochs, E.: Flat covers and flat cotorsion modules. Proc. Am. Math. Soc. 92 (1984), 179-184. | DOI | MR | JFM

[10] Kosmatov, N. V.: Bounds for the homological dimensions of pullbacks. J. Math. Sci., New York 112 (2002), 4367-4370. | DOI | MR | JFM

[11] Salimi, M., Tavasoli, E., Yassemi, S.: The amalgamated duplication of a ring along a semidualizing ideal. Rend. Semin. Mat. Univ. Padova 129 (2013), 115-127. | DOI | MR | JFM

[12] Shapiro, J.: On a construction of Gorenstein rings proposed by M. D'Anna. J. Algebra 323 (2010), 1155-1158. | DOI | MR | JFM

[13] Tavasoli, E.: Some homological properties of amalgamation. Mat. Vesn. 68 (2016), 254-258. | MR | JFM

[14] Tiraş, Y., Tercan, A., Harmanci, A.: Prime modules. Honam Math. J. 18 (1996), 5-15. | MR | JFM

[15] Xu, J.: Flat Covers of Modules. Lecture Notes in Mathematics 1634. Springer, Berlin (1996). | DOI | MR | JFM

Cité par Sources :