Some homological properties of amalgamated modules along an ideal
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 475-486
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \to S$ be a ring homomorphism, $M$ be an $R$-module, $N$ be an $S$-module, and let $\varphi \colon M \to N$ be an $R$-homomorphism. The amalgamation of $R$ with $S$ along $J$ with respect to $f$ denoted by $R \bowtie ^{f} J$ was introduced by M. D'Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of $(R \bowtie ^{f} J)$-module called the amalgamation of $M$ and $N$ along $J$ with respect to $\varphi $, and denoted by $M \bowtie ^{\varphi } JN$. We study some homological properties of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$. Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$ in connection to their corresponding properties of the $R$-modules $M$ and $JN$.
DOI :
10.21136/CMJ.2023.0411-21
Classification :
13A15, 13C10, 13C11, 13C14, 13C15
Keywords: amalgamation of ring; amalgamation of module; Cohen-Macaulay; injective module; projective(flat) module
Keywords: amalgamation of ring; amalgamation of module; Cohen-Macaulay; injective module; projective(flat) module
@article{10_21136_CMJ_2023_0411_21,
author = {Shoar, Hanieh and Salimi, Maryam and Tehranian, Abolfazl and Rasouli, Hamid and Tavasoli, Elham},
title = {Some homological properties of amalgamated modules along an ideal},
journal = {Czechoslovak Mathematical Journal},
pages = {475--486},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {2023},
doi = {10.21136/CMJ.2023.0411-21},
mrnumber = {4586905},
zbl = {07729518},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0411-21/}
}
TY - JOUR AU - Shoar, Hanieh AU - Salimi, Maryam AU - Tehranian, Abolfazl AU - Rasouli, Hamid AU - Tavasoli, Elham TI - Some homological properties of amalgamated modules along an ideal JO - Czechoslovak Mathematical Journal PY - 2023 SP - 475 EP - 486 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0411-21/ DO - 10.21136/CMJ.2023.0411-21 LA - en ID - 10_21136_CMJ_2023_0411_21 ER -
%0 Journal Article %A Shoar, Hanieh %A Salimi, Maryam %A Tehranian, Abolfazl %A Rasouli, Hamid %A Tavasoli, Elham %T Some homological properties of amalgamated modules along an ideal %J Czechoslovak Mathematical Journal %D 2023 %P 475-486 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0411-21/ %R 10.21136/CMJ.2023.0411-21 %G en %F 10_21136_CMJ_2023_0411_21
Shoar, Hanieh; Salimi, Maryam; Tehranian, Abolfazl; Rasouli, Hamid; Tavasoli, Elham. Some homological properties of amalgamated modules along an ideal. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 475-486. doi: 10.21136/CMJ.2023.0411-21
Cité par Sources :