Kernels of Toeplitz operators on the Bergman space
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1119-1130
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.
A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.
DOI : 10.21136/CMJ.2023.0402-22
Classification : 32A36, 47B35
Keywords: Toeplitz operator; Bergman space
@article{10_21136_CMJ_2023_0402_22,
     author = {Lee, Young Joo},
     title = {Kernels of {Toeplitz} operators on the {Bergman} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1119--1130},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0402-22},
     zbl = {07790564},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0402-22/}
}
TY  - JOUR
AU  - Lee, Young Joo
TI  - Kernels of Toeplitz operators on the Bergman space
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1119
EP  - 1130
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0402-22/
DO  - 10.21136/CMJ.2023.0402-22
LA  - en
ID  - 10_21136_CMJ_2023_0402_22
ER  - 
%0 Journal Article
%A Lee, Young Joo
%T Kernels of Toeplitz operators on the Bergman space
%J Czechoslovak Mathematical Journal
%D 2023
%P 1119-1130
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0402-22/
%R 10.21136/CMJ.2023.0402-22
%G en
%F 10_21136_CMJ_2023_0402_22
Lee, Young Joo. Kernels of Toeplitz operators on the Bergman space. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1119-1130. doi: 10.21136/CMJ.2023.0402-22

[1] Chen, Y., Izuchi, K. J., Lee, Y. J.: A Coburn type theorem on the Hardy space of the bidisk. J. Math. Anal. Appl. 466 (2018), 1043-1059. | DOI | MR | JFM

[2] Choe, B. R., Lee, Y. J.: Commuting Toeplitz operators on the harmonic Bergman space. Mich. Math. J. 46 (1999), 163-174. | DOI | MR | JFM

[3] Coburn, L. A.: Weyl's theorem for nonnormal operators. Mich. Math. J. 13 (1966), 285-288. | DOI | MR | JFM

[4] Guo, K., Zhao, X., Zheng, D.: The spectral picture of Bergman Toeplitz operators with harmonic polynomial symbols. Available at , 21 pages. | arXiv | MR

[5] Lee, Y. J.: A Coburn type theorem for Toeplitz operators on the Dirichlet space. J. Math. Anal. Appl. 414 (2014), 237-242. | DOI | MR | JFM

[6] McDonald, G., Sundberg, C.: Toeplitz operators on the disc. Indiana Univ. Math. J. 28 (1979), 595-611. | DOI | MR | JFM

[7] Perälä, A., Virtanen, J. A.: A note on the Fredholm properties of Toeplitz operators on weighted Bergman spaces with matrix-valued symbols. Oper. Matrices 5 (2011), 97-106. | DOI | MR | JFM

[8] Sundberg, C., Zheng, D.: The spectrum and essential spectrum of Toeplitz operators with harmonic symbols. Indiana Univ. Math. J. 59 (2010), 385-394. | DOI | MR | JFM

[9] Vukotić, D.: A note on the range of Toeplitz operators. Integr. Equations Oper. Theory 50 (2004), 565-567. | DOI | MR | JFM

[10] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138. AMS, Providence (2007). | DOI | MR | JFM

Cité par Sources :