On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 955-969.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\leq x, y,z\leq H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^{9/4+\varepsilon })$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^{7/3+\varepsilon })$ obtained by G.-L. Zhou, Y. Ding (2022).
DOI : 10.21136/CMJ.2023.0394-22
Classification : 11L05, 11L40, 11N25
Keywords: square-free; Salié sum; asymptotic formula
@article{10_21136_CMJ_2023_0394_22,
     author = {Chen, Gongrui and Wang, Wenxiao},
     title = {On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {955--969},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2023},
     doi = {10.21136/CMJ.2023.0394-22},
     mrnumber = {4632868},
     zbl = {07729548},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/}
}
TY  - JOUR
AU  - Chen, Gongrui
AU  - Wang, Wenxiao
TI  - On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 955
EP  - 969
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/
DO  - 10.21136/CMJ.2023.0394-22
LA  - en
ID  - 10_21136_CMJ_2023_0394_22
ER  - 
%0 Journal Article
%A Chen, Gongrui
%A Wang, Wenxiao
%T On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$
%J Czechoslovak Mathematical Journal
%D 2023
%P 955-969
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/
%R 10.21136/CMJ.2023.0394-22
%G en
%F 10_21136_CMJ_2023_0394_22
Chen, Gongrui; Wang, Wenxiao. On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 955-969. doi : 10.21136/CMJ.2023.0394-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/

Cité par Sources :