On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 955-969
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\leq x, y,z\leq H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^{9/4+\varepsilon })$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^{7/3+\varepsilon })$ obtained by G.-L. Zhou, Y. Ding (2022).
Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\leq x, y,z\leq H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^{9/4+\varepsilon })$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^{7/3+\varepsilon })$ obtained by G.-L. Zhou, Y. Ding (2022).
DOI : 10.21136/CMJ.2023.0394-22
Classification : 11L05, 11L40, 11N25
Keywords: square-free; Salié sum; asymptotic formula
@article{10_21136_CMJ_2023_0394_22,
     author = {Chen, Gongrui and Wang, Wenxiao},
     title = {On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {955--969},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0394-22},
     mrnumber = {4632868},
     zbl = {07729548},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/}
}
TY  - JOUR
AU  - Chen, Gongrui
AU  - Wang, Wenxiao
TI  - On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 955
EP  - 969
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/
DO  - 10.21136/CMJ.2023.0394-22
LA  - en
ID  - 10_21136_CMJ_2023_0394_22
ER  - 
%0 Journal Article
%A Chen, Gongrui
%A Wang, Wenxiao
%T On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$
%J Czechoslovak Mathematical Journal
%D 2023
%P 955-969
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/
%R 10.21136/CMJ.2023.0394-22
%G en
%F 10_21136_CMJ_2023_0394_22
Chen, Gongrui; Wang, Wenxiao. On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 955-969. doi: 10.21136/CMJ.2023.0394-22

[1] Brandes, J.: Twins of the $s$-Free Numbers: Diploma Thesis. University of Stuttgart, Stuttgart (2009).

[2] Carlitz, L.: On a problem in additive arithmetic. II. Q. J. Math., Oxf. Ser. 3 (1932), 273-290. | DOI | JFM

[3] Chen, B.: On the consecutive square-free values of the polynomials $x_{1}^2 + \cdots + x_{k}^2 + 1$, $x_{1}^2 + \cdots + x_{k}^2 + 2$. (to appear) in Indian J. Pure Appl. Math. | DOI | MR

[4] Dimitrov, S.: On the number of pairs of positive integers $x, y \leq H$ such that $x^2 + y^2 + 1$, $x^2 + y^2 + 2$ are square-free. Acta Arith. 194 (2020), 281-294. | DOI | MR | JFM

[5] Dimitrov, S.: Pairs of square-free values of the type $n^2+1$, $n^2+2$. Czech. Math. J. 71 (2021), 991-1009. | DOI | MR | JFM

[6] Estermann, T.: Einige Sätze über quadratfreie Zahlen. Math. Ann. 105 (1931), 653-662 German. | DOI | MR | JFM

[7] Estermann, T.: A new application of the Hardy-Littlewood-Kloosterman method. Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. | DOI | MR | JFM

[8] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers. Math. Ann. 266 (1984), 251-259. | DOI | MR | JFM

[9] Heath-Brown, D. R.: Square-free values of $n^2+1$. Acta Arith. 155 (2012), 1-13. | DOI | MR | JFM

[10] Iwaniec, H.: Almost-primes represented by quadratic polynomials. Invent. Math. 47 (1978), 171-188. | DOI | MR | JFM

[11] Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics 17. AMS, Providence (1997). | DOI | MR | JFM

[12] Jing, M., Liu, H.: Consecutive square-free numbers and square-free primitive roots. Int. J. Number Theory 18 (2022), 205-226. | DOI | MR | JFM

[13] Mirsky, L.: Note on an asymptotic formula connected with $r$-free integers. Q. J. Math., Oxf. Ser. 18 (1947), 178-182. | DOI | MR | JFM

[14] Mirsky, L.: On the frequency of pairs of square-free numbers with a given difference. Bull. Am. Math. Soc. 55 (1949), 936-939. | DOI | MR | JFM

[15] Nathanson, M. B.: Addictive Number Theory: The Classical Bases. Graduate Texts in Mathematics 164. Springer, New York (1996). | DOI | MR | JFM

[16] Reuss, T.: The Determinant Method and Applications: Ph.D. Thesis. University of Oxford, Oxford (2015).

[17] Tolev, D. I.: On the number of pairs of positive integers $x, y \le H$ such that $x^2 + y^2 + 1$ is square-free. Monatsh. Math. 165 (2012), 557-567. | DOI | MR | JFM

[18] Zhou, G.-L., Ding, Y.: On the square-free values of the polynomial $x^2+ y^2+ z^2+k$. J. Number Theory 236 (2022), 308-322. | DOI | MR | JFM

Cité par Sources :