On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 955-969
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\leq x, y,z\leq H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^{9/4+\varepsilon })$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^{7/3+\varepsilon })$ obtained by G.-L. Zhou, Y. Ding (2022).
Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\leq x, y,z\leq H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^{9/4+\varepsilon })$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^{7/3+\varepsilon })$ obtained by G.-L. Zhou, Y. Ding (2022).
DOI :
10.21136/CMJ.2023.0394-22
Classification :
11L05, 11L40, 11N25
Keywords: square-free; Salié sum; asymptotic formula
Keywords: square-free; Salié sum; asymptotic formula
@article{10_21136_CMJ_2023_0394_22,
author = {Chen, Gongrui and Wang, Wenxiao},
title = {On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$},
journal = {Czechoslovak Mathematical Journal},
pages = {955--969},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0394-22},
mrnumber = {4632868},
zbl = {07729548},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/}
}
TY - JOUR AU - Chen, Gongrui AU - Wang, Wenxiao TI - On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$ JO - Czechoslovak Mathematical Journal PY - 2023 SP - 955 EP - 969 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/ DO - 10.21136/CMJ.2023.0394-22 LA - en ID - 10_21136_CMJ_2023_0394_22 ER -
%0 Journal Article %A Chen, Gongrui %A Wang, Wenxiao %T On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$ %J Czechoslovak Mathematical Journal %D 2023 %P 955-969 %V 73 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0394-22/ %R 10.21136/CMJ.2023.0394-22 %G en %F 10_21136_CMJ_2023_0394_22
Chen, Gongrui; Wang, Wenxiao. On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 955-969. doi: 10.21136/CMJ.2023.0394-22
Cité par Sources :