Keywords: decomposition of a module; FGC-ring; Köthe ring; semiartinian module; \hbox {(semi-)V-module}; locally supplemented module
@article{10_21136_CMJ_2023_0392_22,
author = {Kourki, Farid and Tribak, Rachid},
title = {Commutative rings whose certain modules decompose into direct sums of cyclic submodules},
journal = {Czechoslovak Mathematical Journal},
pages = {1099--1117},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0392-22},
zbl = {07790563},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0392-22/}
}
TY - JOUR AU - Kourki, Farid AU - Tribak, Rachid TI - Commutative rings whose certain modules decompose into direct sums of cyclic submodules JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1099 EP - 1117 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0392-22/ DO - 10.21136/CMJ.2023.0392-22 LA - en ID - 10_21136_CMJ_2023_0392_22 ER -
%0 Journal Article %A Kourki, Farid %A Tribak, Rachid %T Commutative rings whose certain modules decompose into direct sums of cyclic submodules %J Czechoslovak Mathematical Journal %D 2023 %P 1099-1117 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0392-22/ %R 10.21136/CMJ.2023.0392-22 %G en %F 10_21136_CMJ_2023_0392_22
Kourki, Farid; Tribak, Rachid. Commutative rings whose certain modules decompose into direct sums of cyclic submodules. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1099-1117. doi: 10.21136/CMJ.2023.0392-22
[1] Albu, T., Wisbauer, R.: Kasch modules. Advances in Ring Theory Trends in Mathematics. Birkhäuser, Boston (1997), 1-16. | DOI | MR | JFM
[2] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics 13. Springer, New York (1974). | DOI | MR | JFM
[3] Baccella, G.: Semiartinian $V$-rings and semiartinian von Neumann regular rings. J. Algebra 173 (1995), 587-612. | DOI | MR | JFM
[4] Brandal, W.: Commutative Rings whose Finitely Generated Modules Decompose. Lecture Notes in Mathematics 723. Springer, New York (1979). | DOI | MR | JFM
[5] Camillo, V., Yousif, M. F.: Semi-$V$-modules. Commun. Algebra 17 (1989), 165-177. | DOI | MR | JFM
[6] Cheatham, T. J., Smith, J. R.: Regular and semisimple modules. Pac. J. Math. 65 (1976), 315-323. | DOI | MR | JFM
[7] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory. Frontiers in Mathematics. Birkhäuser, Basel (2006). | DOI | MR | JFM
[8] Cohen, I. S.: Commutative rings with resticted minimum condition. Duke Math. J. 17 (1950), 27-42. | DOI | MR | JFM
[9] Cohen, I. S., Kaplansky, I.: Rings for which every module is a direct sum of cyclic modules. Math. Z. 54 (1951), 97-101. | DOI | MR | JFM
[10] Couchot, F.: Indecomposable modules and Gelfand rings. Commun. Algebra 35 (2007), 231-241. | DOI | MR | JFM
[11] Dickson, S. E.: Decomposition of modules. II: Rings whithout chain conditions. Math. Z. 104 (1968), 349-357. | DOI | MR | JFM
[12] Facchini, A.: Rings whose finitely generated torsion modules in the sense of Dickson decompose into direct sums of cyclic submodules. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 68 (1980), 13-21. | MR | JFM
[13] Facchini, A.: Loewy and Artinian modules over commutative rings. Ann. Mat. Pura Appl., IV. Ser. 128 (1981), 359-374. | DOI | MR | JFM
[14] Faith, C.: Locally perfect commutative rings are those whose modules have maximal submodules. Commun. Algebra 23 (1995), 4885-4886. | DOI | MR | JFM
[15] Fuller, K. R.: Relative projectivity and injectivity classes determined by simple modules. J. Lond. Math. Soc., II. Ser. 5 (1972), 423-431. | DOI | MR | JFM
[16] Gill, D. T.: Almost maximal valuation rings. J. Lond. Math. Soc., II. Ser. 4 (1971), 140-146. | DOI | MR | JFM
[17] Gilmer, R.: Commutative rings in which each prime ideal is principal. Math. Ann. 183 (1969), 151-158. | DOI | MR | JFM
[18] Gordon, R., Robson, J. C.: Krull Dimension. Memoirs of the American Mathematical Society 133. AMS, Providence (1973). | DOI | MR | JFM
[19] Hirano, Y.: Regular modules and $V$-modules. Hiroshima Math. J. 11 (1981), 125-142. | DOI | MR | JFM
[20] Kaplansky, I.: Modules over Dedekind rings and valuation rings. Trans. Am. Math. Soc. 72 (1952), 327-340. | DOI | MR | JFM
[21] Köthe, G.: Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring. Math. Z. 39 (1935), 31-44 German. | DOI | MR | JFM
[22] Kourki, F., Tribak, R.: On semiartinian and $\Pi$-semiartinian modules. Palest. J. Math. 7 (2018), 99-107. | MR | JFM
[23] Kourki, F., Tribak, R.: Characterizations of some classes of rings via locally supplemented modules. Int. Electron. J. Algebra 27 (2020), 178-193. | DOI | MR | JFM
[24] Kourki, F., Tribak, R.: On modules satisfying the descending chain condition on cyclic submodules. Algebra Colloq. 27 (2020), 531-544. | DOI | MR | JFM
[25] Kourki, F., Tribak, R.: On Bass modules and semi-$V$-modules. Bull. Belg. Math. Soc. - Simon Stevin 28 (2021), 275-294. | DOI | MR | JFM
[26] Lafon, J.-P.: Anneaux locaux commutatifs sur lesquels tout module de type fini est somme directe de modules monogènes. J. Algebra 17 (1971), 575-591 French. | DOI | MR | JFM
[27] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). | DOI | MR | JFM
[28] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. Springer, New York (2001). | DOI | MR | JFM
[29] Matlis, E.: Decomposable modules. Trans. Am. Math. Soc. 125 (1966), 147-179. | DOI | MR | JFM
[30] Penk, T., Žemlička, J.: Commutative tall rings. J. Algebra Appl. 13 (2014), Article ID 1350129, 11 pages. | DOI | MR | JFM
[31] Pierce, R. S.: Modules over Commutative Regular Rings. Memoirs of the American Mathematical Society 70. AMS, Providence (1967). | DOI | MR | JFM
[32] Sarath, B.: Krull dimension and Noetherianness. Ill. J. Math. 20 (1976), 329-335. | DOI | MR | JFM
[33] Sharpe, D. W., Vámos, P.: Injective Modules. Cambridge Tracts in Mathematics and mathematical Physics 62. Cambridge University Press, Cambridge (1972). | MR | JFM
[34] Shores, T. S.: Decompositions of finitely generated modules. Proc. Am. Math. Soc. 30 (1971), 445-450. | DOI | MR | JFM
[35] Uzkov, A. I.: On the decomposition of modules over a commutative ring into direct sums of cyclic submodules. Mat. Sb., N. Ser. 62 (104) (1963), 469-475 Russian. | MR | JFM
[36] Vámos, P.: The dual notion of "finitely generated". J. Lond. Math. Soc. 43 (1968), 643-646. | DOI | MR | JFM
[37] R. B. Warfield, Jr.: Decomposability of finitely presented modules. Proc. Am. Math. Soc. 25 (1970), 167-172. | DOI | MR | JFM
[38] Wisbauer, R.: Foundations of Module and Ring Theory: A Handbook for Study and Research. Algebra, Logic and Applications 3. Gordon and Breach Science Publishers, Philadelphia (1991). | DOI | MR | JFM
Cité par Sources :