Fredholmness of pseudo-differential operators with nonregular symbols
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 941-954
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish the Fredholmness of a pseudo-differential operator whose symbol is of class $C^{0,\sigma }$, $0\sigma 1$, in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).
We establish the Fredholmness of a pseudo-differential operator whose symbol is of class $C^{0,\sigma }$, $0\sigma 1$, in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).
DOI : 10.21136/CMJ.2023.0387-22
Classification : 35S05, 47A53, 47G30
Keywords: Fredholmness; pseudo-differential operator; nonregular symbol
@article{10_21136_CMJ_2023_0387_22,
     author = {Yoshitomi, Kazushi},
     title = {Fredholmness of pseudo-differential operators with nonregular symbols},
     journal = {Czechoslovak Mathematical Journal},
     pages = {941--954},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0387-22},
     mrnumber = {4632867},
     zbl = {07729547},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0387-22/}
}
TY  - JOUR
AU  - Yoshitomi, Kazushi
TI  - Fredholmness of pseudo-differential operators with nonregular symbols
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 941
EP  - 954
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0387-22/
DO  - 10.21136/CMJ.2023.0387-22
LA  - en
ID  - 10_21136_CMJ_2023_0387_22
ER  - 
%0 Journal Article
%A Yoshitomi, Kazushi
%T Fredholmness of pseudo-differential operators with nonregular symbols
%J Czechoslovak Mathematical Journal
%D 2023
%P 941-954
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0387-22/
%R 10.21136/CMJ.2023.0387-22
%G en
%F 10_21136_CMJ_2023_0387_22
Yoshitomi, Kazushi. Fredholmness of pseudo-differential operators with nonregular symbols. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 941-954. doi: 10.21136/CMJ.2023.0387-22

[1] Abels, H.: Pseudodifferential and Singular Integral Operators: An Introduction With Applications. de Gruyter Graduate Lectures. Walter de Gruyter, Berlin (2012). | DOI | MR | JFM

[2] Abels, H., Pfeuffer, C.: Fredholm property of non-smooth pseudodifferential operators. Math. Nachr. 293 (2020), 822-846. | DOI | MR | JFM

[3] Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Pseudo-Diffe-rential Operators. Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin (1994). | DOI | MR | JFM

[4] Kohn, J. J., Nirenberg, L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18 (1965), 269-305. | DOI | MR | JFM

[5] Kumano-go, H.: Pseudo-Differential Operators. MIT Press, Cambridge (1982). | MR | JFM

[6] Nagase, M.: The $L^p$-boundedness of pseudo-differential operators with non-regular symbols. Commun. Partial Differ. Equations 2 (1977), 1045-1061. | DOI | MR | JFM

[7] Taylor, M. E.: Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics 100. Brikhäuser, Boston (1991). | DOI | MR | JFM

Cité par Sources :