Keywords: Fredholmness; pseudo-differential operator; nonregular symbol
@article{10_21136_CMJ_2023_0387_22,
author = {Yoshitomi, Kazushi},
title = {Fredholmness of pseudo-differential operators with nonregular symbols},
journal = {Czechoslovak Mathematical Journal},
pages = {941--954},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0387-22},
mrnumber = {4632867},
zbl = {07729547},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0387-22/}
}
TY - JOUR AU - Yoshitomi, Kazushi TI - Fredholmness of pseudo-differential operators with nonregular symbols JO - Czechoslovak Mathematical Journal PY - 2023 SP - 941 EP - 954 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0387-22/ DO - 10.21136/CMJ.2023.0387-22 LA - en ID - 10_21136_CMJ_2023_0387_22 ER -
%0 Journal Article %A Yoshitomi, Kazushi %T Fredholmness of pseudo-differential operators with nonregular symbols %J Czechoslovak Mathematical Journal %D 2023 %P 941-954 %V 73 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0387-22/ %R 10.21136/CMJ.2023.0387-22 %G en %F 10_21136_CMJ_2023_0387_22
Yoshitomi, Kazushi. Fredholmness of pseudo-differential operators with nonregular symbols. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 941-954. doi: 10.21136/CMJ.2023.0387-22
[1] Abels, H.: Pseudodifferential and Singular Integral Operators: An Introduction With Applications. de Gruyter Graduate Lectures. Walter de Gruyter, Berlin (2012). | DOI | MR | JFM
[2] Abels, H., Pfeuffer, C.: Fredholm property of non-smooth pseudodifferential operators. Math. Nachr. 293 (2020), 822-846. | DOI | MR | JFM
[3] Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Pseudo-Diffe-rential Operators. Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin (1994). | DOI | MR | JFM
[4] Kohn, J. J., Nirenberg, L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18 (1965), 269-305. | DOI | MR | JFM
[5] Kumano-go, H.: Pseudo-Differential Operators. MIT Press, Cambridge (1982). | MR | JFM
[6] Nagase, M.: The $L^p$-boundedness of pseudo-differential operators with non-regular symbols. Commun. Partial Differ. Equations 2 (1977), 1045-1061. | DOI | MR | JFM
[7] Taylor, M. E.: Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics 100. Brikhäuser, Boston (1991). | DOI | MR | JFM
Cité par Sources :