On the class number of the maximal real subfields of a family of cyclotomic fields
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 937-940
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For any square-free positive integer $m\equiv {10}\pmod {16}$ with $m\geq 26$, we prove that the class number of the real cyclotomic field $\mathbb {Q}(\zeta _{4m}+\zeta _{4m}^{-1})$ is greater than $1$, where $\zeta _{4m}$ is a primitive $4m$th root of unity.
DOI :
10.21136/CMJ.2023.0364-22
Classification :
11R11, 11R18, 11R29
Keywords: maximal real subfield of cyclotomic field; real quadratic field; class number
Keywords: maximal real subfield of cyclotomic field; real quadratic field; class number
@article{10_21136_CMJ_2023_0364_22,
author = {Ram, Mahesh Kumar},
title = {On the class number of the maximal real subfields of a family of cyclotomic fields},
journal = {Czechoslovak Mathematical Journal},
pages = {937--940},
publisher = {mathdoc},
volume = {73},
number = {3},
year = {2023},
doi = {10.21136/CMJ.2023.0364-22},
mrnumber = {4632866},
zbl = {07729546},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0364-22/}
}
TY - JOUR AU - Ram, Mahesh Kumar TI - On the class number of the maximal real subfields of a family of cyclotomic fields JO - Czechoslovak Mathematical Journal PY - 2023 SP - 937 EP - 940 VL - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0364-22/ DO - 10.21136/CMJ.2023.0364-22 LA - en ID - 10_21136_CMJ_2023_0364_22 ER -
%0 Journal Article %A Ram, Mahesh Kumar %T On the class number of the maximal real subfields of a family of cyclotomic fields %J Czechoslovak Mathematical Journal %D 2023 %P 937-940 %V 73 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0364-22/ %R 10.21136/CMJ.2023.0364-22 %G en %F 10_21136_CMJ_2023_0364_22
Ram, Mahesh Kumar. On the class number of the maximal real subfields of a family of cyclotomic fields. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 937-940. doi: 10.21136/CMJ.2023.0364-22
Cité par Sources :