On the class number of the maximal real subfields of a family of cyclotomic fields
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 937-940
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For any square-free positive integer $m\equiv {10}\pmod {16}$ with $m\geq 26$, we prove that the class number of the real cyclotomic field $\mathbb {Q}(\zeta _{4m}+\zeta _{4m}^{-1})$ is greater than $1$, where $\zeta _{4m}$ is a primitive $4m$th root of unity.
For any square-free positive integer $m\equiv {10}\pmod {16}$ with $m\geq 26$, we prove that the class number of the real cyclotomic field $\mathbb {Q}(\zeta _{4m}+\zeta _{4m}^{-1})$ is greater than $1$, where $\zeta _{4m}$ is a primitive $4m$th root of unity.
DOI : 10.21136/CMJ.2023.0364-22
Classification : 11R11, 11R18, 11R29
Keywords: maximal real subfield of cyclotomic field; real quadratic field; class number
@article{10_21136_CMJ_2023_0364_22,
     author = {Ram, Mahesh Kumar},
     title = {On the class number of the maximal real subfields of a family of cyclotomic fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {937--940},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0364-22},
     mrnumber = {4632866},
     zbl = {07729546},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0364-22/}
}
TY  - JOUR
AU  - Ram, Mahesh Kumar
TI  - On the class number of the maximal real subfields of a family of cyclotomic fields
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 937
EP  - 940
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0364-22/
DO  - 10.21136/CMJ.2023.0364-22
LA  - en
ID  - 10_21136_CMJ_2023_0364_22
ER  - 
%0 Journal Article
%A Ram, Mahesh Kumar
%T On the class number of the maximal real subfields of a family of cyclotomic fields
%J Czechoslovak Mathematical Journal
%D 2023
%P 937-940
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0364-22/
%R 10.21136/CMJ.2023.0364-22
%G en
%F 10_21136_CMJ_2023_0364_22
Ram, Mahesh Kumar. On the class number of the maximal real subfields of a family of cyclotomic fields. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 937-940. doi: 10.21136/CMJ.2023.0364-22

[1] Ankeny, N. C., Chowla, S., Hasse, H.: On the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 217 (1965), 217-220. | DOI | MR | JFM

[2] Gica, A.: Quadratic residues of certain types. Rocky Mt. J. Math. 36 (2006), 1867-1871. | DOI | MR | JFM

[3] Hasse, H.: Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper. Elem. Math. 20 (1965), 49-59 German. | MR | JFM

[4] Hoque, A., Chakraborty, K.: Pell-type equations and class number of the maximal real subfield of a cyclotomic field. Ramanujan J. 46 (2018), 727-742. | DOI | MR | JFM

[5] Hoque, A., Saikia, H. K.: On the class-number of the maximal real subfield of a cyclotomic field. Quaest. Math. 39 (2016), 889-894. | DOI | MR | JFM

[6] Lang, S.-D.: Note on the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 290 (1977), 70-72. | DOI | MR | JFM

[7] Osada, H.: Note on the class-number of the maximal real subfield of a cyclotomic field. Manuscr. Math. 58 (1987), 215-227. | DOI | MR | JFM

[8] Takeuchi, H.: On the class-number of the maximal real subfield of a cyclotomic field. Can. J. Math. 33 (1981), 55-58. | DOI | MR | JFM

[9] Yamaguchi, I.: On the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 272 (1975), 217-220. | DOI | MR | JFM

Cité par Sources :