Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1081-1098
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems$$ \begin {cases} -[\phi (u^{\prime })]^{\prime }=\lambda u^{p} \Bigl (1-\dfrac {u}{N} \Bigr ) \text {in} \^^M( -L,L) , \\ u(-L)=u(L)=0,\end {cases} $$ where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt {1-u^{2}}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.
We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems$$ \begin {cases} -[\phi (u^{\prime })]^{\prime }=\lambda u^{p} \Bigl (1-\dfrac {u}{N} \Bigr ) \text {in} \^^M( -L,L) , \\ u(-L)=u(L)=0,\end {cases} $$ where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt {1-u^{2}}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.
DOI :
10.21136/CMJ.2023.0359-22
Classification :
34B15, 34B18, 34C23, 74G35
Keywords: positive solution; bifurcation curve; Minkowski-curvature problem, logistic problem
Keywords: positive solution; bifurcation curve; Minkowski-curvature problem, logistic problem
@article{10_21136_CMJ_2023_0359_22,
author = {Huang, Shao-Yuan and Hsieh, Ping-Han},
title = {Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems},
journal = {Czechoslovak Mathematical Journal},
pages = {1081--1098},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0359-22},
zbl = {07790562},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/}
}
TY - JOUR AU - Huang, Shao-Yuan AU - Hsieh, Ping-Han TI - Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1081 EP - 1098 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/ DO - 10.21136/CMJ.2023.0359-22 LA - en ID - 10_21136_CMJ_2023_0359_22 ER -
%0 Journal Article %A Huang, Shao-Yuan %A Hsieh, Ping-Han %T Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems %J Czechoslovak Mathematical Journal %D 2023 %P 1081-1098 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/ %R 10.21136/CMJ.2023.0359-22 %G en %F 10_21136_CMJ_2023_0359_22
Huang, Shao-Yuan; Hsieh, Ping-Han. Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1081-1098. doi: 10.21136/CMJ.2023.0359-22
Cité par Sources :