Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1081-1098.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems$$ \begin {cases} -[\phi (u^{\prime })]^{\prime }=\lambda u^{p} \Bigl (1-\dfrac {u}{N} \Bigr ) \text {in} \^^M( -L,L) , \\ u(-L)=u(L)=0,\end {cases} $$ where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt {1-u^{2}}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.
DOI : 10.21136/CMJ.2023.0359-22
Classification : 34B15, 34B18, 34C23, 74G35
Keywords: positive solution; bifurcation curve; Minkowski-curvature problem, logistic problem
@article{10_21136_CMJ_2023_0359_22,
     author = {Huang, Shao-Yuan and Hsieh, Ping-Han},
     title = {Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1081--1098},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2023},
     doi = {10.21136/CMJ.2023.0359-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/}
}
TY  - JOUR
AU  - Huang, Shao-Yuan
AU  - Hsieh, Ping-Han
TI  - Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1081
EP  - 1098
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/
DO  - 10.21136/CMJ.2023.0359-22
LA  - en
ID  - 10_21136_CMJ_2023_0359_22
ER  - 
%0 Journal Article
%A Huang, Shao-Yuan
%A Hsieh, Ping-Han
%T Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
%J Czechoslovak Mathematical Journal
%D 2023
%P 1081-1098
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/
%R 10.21136/CMJ.2023.0359-22
%G en
%F 10_21136_CMJ_2023_0359_22
Huang, Shao-Yuan; Hsieh, Ping-Han. Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1081-1098. doi : 10.21136/CMJ.2023.0359-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/

Cité par Sources :