Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1081-1098
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems$$ \begin {cases} -[\phi (u^{\prime })]^{\prime }=\lambda u^{p} \Bigl (1-\dfrac {u}{N} \Bigr ) \text {in} \^^M( -L,L) , \\ u(-L)=u(L)=0,\end {cases} $$ where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt {1-u^{2}}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.
We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems$$ \begin {cases} -[\phi (u^{\prime })]^{\prime }=\lambda u^{p} \Bigl (1-\dfrac {u}{N} \Bigr ) \text {in} \^^M( -L,L) , \\ u(-L)=u(L)=0,\end {cases} $$ where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt {1-u^{2}}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.
DOI : 10.21136/CMJ.2023.0359-22
Classification : 34B15, 34B18, 34C23, 74G35
Keywords: positive solution; bifurcation curve; Minkowski-curvature problem, logistic problem
@article{10_21136_CMJ_2023_0359_22,
     author = {Huang, Shao-Yuan and Hsieh, Ping-Han},
     title = {Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1081--1098},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0359-22},
     zbl = {07790562},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/}
}
TY  - JOUR
AU  - Huang, Shao-Yuan
AU  - Hsieh, Ping-Han
TI  - Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1081
EP  - 1098
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/
DO  - 10.21136/CMJ.2023.0359-22
LA  - en
ID  - 10_21136_CMJ_2023_0359_22
ER  - 
%0 Journal Article
%A Huang, Shao-Yuan
%A Hsieh, Ping-Han
%T Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
%J Czechoslovak Mathematical Journal
%D 2023
%P 1081-1098
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0359-22/
%R 10.21136/CMJ.2023.0359-22
%G en
%F 10_21136_CMJ_2023_0359_22
Huang, Shao-Yuan; Hsieh, Ping-Han. Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1081-1098. doi: 10.21136/CMJ.2023.0359-22

[1] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87 (1982), 131-152. | DOI | MR | JFM

[2] Chafee, N., Infante, E. F.: A bifurcation problem for a nonlinear partial differential equation of parabolic type. Appl. Anal. 4 (1974), 17-37. | DOI | MR | JFM

[3] Coelho, I., Corsato, C., Obersnel, F., Omari, P.: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv. Nonlinear Stud. 12 (2012), 621-638. | DOI | MR | JFM

[4] Corsato, C.: Mathematical Analysis of Some Differential Models Involving the Euclidean or the Minkowski Mean Curvature Operator: Ph.D. Thesis. University of Trieste, Trieste (2015), Available at http://hdl.handle.net/10077/11127\kern0pt

[5] Feynman, R. P., Leighton, R. B., Sands, M.: The Feynman Lectures on Physics. II. Mainly Electromagnetism and Matter. Addison-Wesley, Reading (1964). | MR | JFM

[6] Guedda, M., Véron, L.: Bifurcation phenomena associated to the $p$-Laplace operator. Trans. Am. Math. Soc. 310 (1988), 419-431. | DOI | MR | JFM

[7] Huang, S.-Y.: Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications. J. Differ. Equations 264 (2018), 5977-6011. | DOI | MR | JFM

[8] Huang, S.-Y.: Exact multiplicity and bifurcation curves of positive solutions of a one- dimensional Minkowski- curvature problem and its application. Commun. Pure Appl. Anal. 17 (2018), 1271-1294. | DOI | MR | JFM

[9] Huang, S.-Y.: Bifurcation diagrams of positive solutions for one-dimensional Minkowski- curvature problem and its applications. Discrete Contin. Dyn. Syst. 39 (2019), 3443-3462. | DOI | MR | JFM

[10] Huang, S.-Y.: Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Commun. Pure Appl. Anal. 18 (2019), 3267-3284. | DOI | MR | JFM

[11] Hung, K.-C., Huang, S.-Y., Wang, S.-H.: A global bifurcation theorem for a positone multiparameter problem and its application. Discrete Contin. Dyn. Syst. 37 (2017), 5127-5149. | DOI | MR | JFM

[12] Hung, K.-C., Wang, S.-H.: Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications. Trans. Am. Math. Soc. 365 (2013), 1933-1956. | DOI | MR | JFM

[13] Laetsch, T.: The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20 (1970), 1-13. | DOI | MR | JFM

[14] McCabe, P. M., Leach, J. A., Needham, D. J.: The evolution of travelling waves in fractional order autocatalysis with decay. I. Permanent from travelling waves. SIAM J. Appl. Math. 59 (1999), 870-899. | DOI | MR | JFM

[15] Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak Allee effect. J. Math. Biol. 52 (2006), 807-829. | DOI | MR | JFM

[16] Takeuchi, S., Yamada, Y.: Asymptotic properties of a reaction-diffusion equation with degenerate $p$-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 41-61. | DOI | MR | JFM

[17] Verhulst, P. F.: Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10 (1838), 113-121 French.

[18] Wang, M.-H., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171 (2001), 83-97. | DOI | MR | JFM

[19] Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42 (2000), 161-230. | DOI | MR | JFM

Cité par Sources :