Keywords: total ring of fractions; ring extension; intermediate ring; overring; finite direct product; FIP extension; FCP extension; integrally closed; integral domain; Prüfer domain; valuation domain; normal pair; normal ring; length of ring extension; number of intermediate ring; number of overring
@article{10_21136_CMJ_2023_0358_22,
author = {Ben Nasr, Mabrouk and Jaballah, Ali},
title = {Equations for the set of overrings of normal rings and related ring extensions},
journal = {Czechoslovak Mathematical Journal},
pages = {921--935},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0358-22},
mrnumber = {4632865},
zbl = {07729545},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0358-22/}
}
TY - JOUR AU - Ben Nasr, Mabrouk AU - Jaballah, Ali TI - Equations for the set of overrings of normal rings and related ring extensions JO - Czechoslovak Mathematical Journal PY - 2023 SP - 921 EP - 935 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0358-22/ DO - 10.21136/CMJ.2023.0358-22 LA - en ID - 10_21136_CMJ_2023_0358_22 ER -
%0 Journal Article %A Ben Nasr, Mabrouk %A Jaballah, Ali %T Equations for the set of overrings of normal rings and related ring extensions %J Czechoslovak Mathematical Journal %D 2023 %P 921-935 %V 73 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0358-22/ %R 10.21136/CMJ.2023.0358-22 %G en %F 10_21136_CMJ_2023_0358_22
Ben Nasr, Mabrouk; Jaballah, Ali. Equations for the set of overrings of normal rings and related ring extensions. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 921-935. doi: 10.21136/CMJ.2023.0358-22
[1] Anderson, D. D., Dobbs, D. E., Mullins, B.: The primitive element theorem for commutative algebras. Houston J. Math. 25 (1999), 603-623 corrigendum ibid 28 2002 217-219. | MR | JFM
[2] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. | DOI | MR | JFM
[3] Badawi, A., Jaballah, A.: Some finiteness conditions on the set of overrings of a $\phi$-ring. Houston J. Math. 34 (2008), 397-408. | MR | JFM
[4] Bastida, E., Gilmer, R.: Overrings and divisorial ideals of rings of the form $D+M$. Mich. Math. J. 20 (1973), 79-95. | DOI | MR | JFM
[5] Nasr, M. Ben: On finiteness of chains of intermediate rings. Monatsh. Math. 158 (2009), 97-102. | DOI | MR | JFM
[6] Nasr, M. Ben: An answer to a problem about the number of overrings. J. Algebra Appl. 15 (2016), Article ID 1650022, 8 pages. | DOI | MR | JFM
[7] Nasr, M. Ben, Jaballah, A.: Counting intermediate rings in normal pairs. Expo. Math. 26 (2008), 163-175. | DOI | MR | JFM
[8] Nasr, M. Ben, Jaballah, A.: The number of intermediate rings in FIP extension of integral domains. J. Algebra Appl. 19 (2020), Article ID 2050171, 12 pages. | DOI | MR | JFM
[9] Nasr, M. Ben, Jarboui, N.: New results about normal pairs of rings with zero-divisors. Ric. Mat. 63 (2014), 149-155. | DOI | MR | JFM
[10] Nasr, M. Ben, Zeidi, N.: A special chain theorem in the set of intermediate rings. J. Algebra Appl. 16 (2017), Articles ID 1750185, 11 pages. | DOI | MR | JFM
[11] Nasr, M. Ben, Zeidi, N.: When is the integral closure comparable to all intermediate rings. Bull. Aust. Math. Soc. 95 (2017), 14-21. | DOI | MR | JFM
[12] Davis, E. D.: Overrings of commutative rings. III: Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. | DOI | MR | JFM
[13] Dobbs, D. E., Mullins, B., Picavet, G., Picavet-L'Hermitte, M.: On the FIP property for extensions of commutative rings. Commun. Algebra 33 (2005), 3091-3119. | DOI | MR | JFM
[14] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371 (2012), 391-429. | DOI | MR | JFM
[15] Dobbs, D. E., Shapiro, J.: Normal pairs with zero-divisors. J. Algebra Appl. 10 (2011), 335-356. | DOI | MR | JFM
[16] Gaur, A., Kumar, R.: Maximal non-Prüfer and maximal non-$\phi$-Prüfer rings. Commun. Algebra 50 (2022), 1613-1631. | DOI | MR | JFM
[17] Gilmer, R.: Multiplicative Ideal Theory. Pure and Applied Mathematics 12. Marcel Dekker, New York (1972). | MR | JFM
[18] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain. Proc. Am. Math. Soc. 131 (2003), 2337-2346. | DOI | MR | JFM
[19] Grothendieck, A.: Éléments de géométrie algébrique. Publ. Math., Inst. Hautes Étud. Sci. 4 (1960), 1-228 French. | DOI | MR | JFM
[20] Jaballah, A.: Subrings of $Q$. J. Sci. Technology 2 (1997), 1-13.
[21] Jaballah, A.: A lower bound for the number of intermediary rings. Commun. Algebra 27 (1999), 1307-1311. | DOI | MR | JFM
[22] Jaballah, A.: Finiteness of the set of intermediary rings in normal pairs. Saitama Math. J. 17 (1999), 59-61. | MR | JFM
[23] Jaballah, A.: The number of overrings of an integrally closed domain. Expo. Math. 23 (2005), 353-360. | DOI | MR | JFM
[24] Jaballah, A.: Ring extensions with some finiteness conditions on the set of intermediate rings. Czech. Math. J. 60 (2010), 117-124. | DOI | MR | JFM
[25] Jaballah, A.: Numerical characterizations of some integral domains. Monatsh. Math. 164 (2011), 171-181. | DOI | MR | JFM
[26] Jaballah, A.: Maximal non-Prüfer and maximal non-integrally closed subrings of a field. J. Algebra Appl. 11 (2012), Article ID 1250041, 18 pages. | DOI | MR | JFM
[27] Jaballah, A.: Graph theoretic characterizations of maximal non-valuation subrings of a field. Beitr. Algebra Geom. 54 (2013), 111-120. | DOI | MR | JFM
[28] Jaballah, A.: Integral domains whose overrings are discrete valuation rings. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62 (2016), 361-369. | MR | JFM
[29] Jaballah, A.: The dimension-overrings equation and maximal ideals of integral domains. (to appear) in Beitr. Algebra Geom. | DOI
[30] Jaballah, A., Jarboui, N.: From topologies of a set to subrings of its power set. Bull. Aust. Math. Soc. 102 (2020), 15-20. | DOI | MR | JFM
[31] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). | DOI | MR | JFM
[32] Picavet, G., Picavet-L'Hermitte, M.: FIP and FCP products of ring morphisms. Palest. J. Math. 5 (2016), 63-80. | MR | JFM
[33] Stacks Project. Part 1: Preliminaries. Chapter 10: Commutative Algebra. Section 10.37: Normal rings. Lemma 10.37.16. Available at https://stacks.math.columbia.edu/tag/030C
[34] Stacks Project. Part 1: Preliminaries. Chapter 10: Commutative Algebra. Section 10.23: Glueing propertiesLemma 10.23.1. Available at https://stacks.math.columbia.edu/tag/00HN
Cité par Sources :