Run-length function of the Bolyai-Rényi expansion of real numbers
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 319-335.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By iterating the Bolyai-Rényi transformation $T(x)=(x+1)^{2} \pmod 1$, almost every real number $x\in [0,1)$ can be expanded as a continued radical expression $$ x=-1+\sqrt {x_{1}+\sqrt {x_{2}+\cdots +\sqrt {x_{n}+\cdots }}} $$ with digits $x_{n}\in \{0,1,2\}$ for all $n\in \mathbb {N}$. For any real number $x\in [0,1)$ and digit $i\in \{0,1,2\}$, let $r_{n}(x,i)$ be the maximal length of consecutive $i$'s in the first $n$ digits of the Bolyai-Rényi expansion of $x$. We study the asymptotic behavior of the run-length function $r_{n}(x,i)$. We prove that for any digit $i\in \{0,1,2\}$, the Lebesgue measure of the set $$ D(i)=\Bigl \{x\in [0,1)\colon \lim _{n\rightarrow \infty } \frac {r_n(x,i)}{\log n}=\frac {1}{\log \theta _{i}} \Bigr \} $$ is $1$, where $\theta _{i}=1+\sqrt {4i+1}$. We also obtain that the level set $$ E_{\alpha }(i)=\Bigl \{x\in [0,1)\colon \lim _{n\rightarrow \infty } \frac {r_n(x,i)}{\log n}=\alpha \Bigr \} $$ is of full Hausdorff dimension for any $0\leq \alpha \leq \infty $.
DOI : 10.21136/CMJ.2023.0351-23
Classification : 11K55, 28A80
Keywords: run-length function; Bolyai-Rényi expansion; Lebesgue measure; Hausdorff dimension
@article{10_21136_CMJ_2023_0351_23,
     author = {Li, Rao and L\"u, Fan and Zhou, Li},
     title = {Run-length function of the {Bolyai-R\'enyi} expansion of real numbers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {319--335},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2024},
     doi = {10.21136/CMJ.2023.0351-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-23/}
}
TY  - JOUR
AU  - Li, Rao
AU  - Lü, Fan
AU  - Zhou, Li
TI  - Run-length function of the Bolyai-Rényi expansion of real numbers
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 319
EP  - 335
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-23/
DO  - 10.21136/CMJ.2023.0351-23
LA  - en
ID  - 10_21136_CMJ_2023_0351_23
ER  - 
%0 Journal Article
%A Li, Rao
%A Lü, Fan
%A Zhou, Li
%T Run-length function of the Bolyai-Rényi expansion of real numbers
%J Czechoslovak Mathematical Journal
%D 2024
%P 319-335
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-23/
%R 10.21136/CMJ.2023.0351-23
%G en
%F 10_21136_CMJ_2023_0351_23
Li, Rao; Lü, Fan; Zhou, Li. Run-length function of the Bolyai-Rényi expansion of real numbers. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 319-335. doi : 10.21136/CMJ.2023.0351-23. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-23/

Cité par Sources :