Keywords: run-length function; Bolyai-Rényi expansion; Lebesgue measure; Hausdorff dimension
@article{10_21136_CMJ_2023_0351_23,
author = {Li, Rao and L\"u, Fan and Zhou, Li},
title = {Run-length function of the {Bolyai-R\'enyi} expansion of real numbers},
journal = {Czechoslovak Mathematical Journal},
pages = {319--335},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2023.0351-23},
mrnumber = {4717837},
zbl = {07893382},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-23/}
}
TY - JOUR AU - Li, Rao AU - Lü, Fan AU - Zhou, Li TI - Run-length function of the Bolyai-Rényi expansion of real numbers JO - Czechoslovak Mathematical Journal PY - 2024 SP - 319 EP - 335 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-23/ DO - 10.21136/CMJ.2023.0351-23 LA - en ID - 10_21136_CMJ_2023_0351_23 ER -
%0 Journal Article %A Li, Rao %A Lü, Fan %A Zhou, Li %T Run-length function of the Bolyai-Rényi expansion of real numbers %J Czechoslovak Mathematical Journal %D 2024 %P 319-335 %V 74 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-23/ %R 10.21136/CMJ.2023.0351-23 %G en %F 10_21136_CMJ_2023_0351_23
Li, Rao; Lü, Fan; Zhou, Li. Run-length function of the Bolyai-Rényi expansion of real numbers. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 319-335. doi: 10.21136/CMJ.2023.0351-23
[1] Erdős, P., Rényi, A.: On a new law of large numbers. J. Anal. Math. 23 (1970), 103-111. | DOI | MR | JFM
[2] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Chichester (2014). | DOI | MR | JFM
[3] Jenkinson, O., Pollicott, M.: Ergodic properties of the Bolyai-Rényi expansion. Indag. Math., New Ser. 11 (2000), 399-418. | DOI | MR | JFM
[4] Ma, J.-H., Wen, S.-Y., Wen, Z.-Y.: Egoroff's theorem and maximal run length. Monatsh. Math. 151 (2007), 287-292. | DOI | MR | JFM
[5] Philipp, W.: Some metrical theorems in number theory. Pac. J. Math. 20 (1967), 109-127. | DOI | MR | JFM
[6] Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957), 477-493. | DOI | MR | JFM
[7] Song, T., Zhou, Q.: On the longest block function in continued fractions. Bull. Aust. Math. Soc. 102 (2020), 196-206. | DOI | MR | JFM
[8] Sun, Y., Xu, J.: On the maximal run-length function in the Lüroth expansion. Czech. Math. J. 68 (2018), 277-291. | DOI | MR | JFM
[9] Tong, X., Yu, Y., Zhao, Y.: On the maximal length of consecutive zero digits of $\beta$-expansions. Int. J. Number Theory 12 (2016), 625-633. | DOI | MR | JFM
[10] Wang, B.-W., Wu, J.: On the maximal run-length function in continued fractions. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 34 (2011), 247-268.
[11] Zou, R.: Hausdorff dimension of the maximal run-length in dyadic expansion. Czech. Math. J. 61 (2011), 881-888. | DOI | MR | JFM
Cité par Sources :