Ding projective and Ding injective modules over trivial ring extensions
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 903-919.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_{R}$, $_{R}M$, $(R,0)_{R\ltimes M}$ and $_{R\ltimes M}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel {M\otimes \alpha }\longrightarrow M\otimes _R X\stackrel {\alpha }\rightarrow X$ is exact and ${\rm coker}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.
DOI : 10.21136/CMJ.2023.0351-22
Classification : 16D40, 16D50, 16E05
Keywords: trivial extension; Ding projective module; Ding injective module
@article{10_21136_CMJ_2023_0351_22,
     author = {Mao, Lixin},
     title = {Ding projective and {Ding} injective modules over trivial ring extensions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {903--919},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2023},
     doi = {10.21136/CMJ.2023.0351-22},
     mrnumber = {4632864},
     zbl = {07729544},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/}
}
TY  - JOUR
AU  - Mao, Lixin
TI  - Ding projective and Ding injective modules over trivial ring extensions
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 903
EP  - 919
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/
DO  - 10.21136/CMJ.2023.0351-22
LA  - en
ID  - 10_21136_CMJ_2023_0351_22
ER  - 
%0 Journal Article
%A Mao, Lixin
%T Ding projective and Ding injective modules over trivial ring extensions
%J Czechoslovak Mathematical Journal
%D 2023
%P 903-919
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/
%R 10.21136/CMJ.2023.0351-22
%G en
%F 10_21136_CMJ_2023_0351_22
Mao, Lixin. Ding projective and Ding injective modules over trivial ring extensions. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 903-919. doi : 10.21136/CMJ.2023.0351-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/

Cité par Sources :