Ding projective and Ding injective modules over trivial ring extensions
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 903-919
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_{R}$, $_{R}M$, $(R,0)_{R\ltimes M}$ and $_{R\ltimes M}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel {M\otimes \alpha }\longrightarrow M\otimes _R X\stackrel {\alpha }\rightarrow X$ is exact and ${\rm coker}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.
Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_{R}$, $_{R}M$, $(R,0)_{R\ltimes M}$ and $_{R\ltimes M}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel {M\otimes \alpha }\longrightarrow M\otimes _R X\stackrel {\alpha }\rightarrow X$ is exact and ${\rm coker}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.
DOI : 10.21136/CMJ.2023.0351-22
Classification : 16D40, 16D50, 16E05
Keywords: trivial extension; Ding projective module; Ding injective module
@article{10_21136_CMJ_2023_0351_22,
     author = {Mao, Lixin},
     title = {Ding projective and {Ding} injective modules over trivial ring extensions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {903--919},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0351-22},
     mrnumber = {4632864},
     zbl = {07729544},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/}
}
TY  - JOUR
AU  - Mao, Lixin
TI  - Ding projective and Ding injective modules over trivial ring extensions
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 903
EP  - 919
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/
DO  - 10.21136/CMJ.2023.0351-22
LA  - en
ID  - 10_21136_CMJ_2023_0351_22
ER  - 
%0 Journal Article
%A Mao, Lixin
%T Ding projective and Ding injective modules over trivial ring extensions
%J Czechoslovak Mathematical Journal
%D 2023
%P 903-919
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/
%R 10.21136/CMJ.2023.0351-22
%G en
%F 10_21136_CMJ_2023_0351_22
Mao, Lixin. Ding projective and Ding injective modules over trivial ring extensions. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 903-919. doi: 10.21136/CMJ.2023.0351-22

[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94. AMS, Providence (1969). | DOI | MR | JFM

[2] Ding, N., Li, Y., Mao, L.: Strongly Gorenstein flat modules. J. Aust. Math. Soc. 86 (2009), 323-338. | DOI | MR | JFM

[3] Enochs, E. E., Cortés-Izurdiaga, M., Torrecillas, B.: Gorenstein conditions over triangular matrix rings. J. Pure Appl. Algebra 218 (2014), 1544-1554. | DOI | MR | JFM

[4] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. | DOI | MR | JFM

[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[6] Fieldhouse, D. J.: Character modules, dimension and purity. Glasg. Math. J. 13 (1972), 144-146. | DOI | MR | JFM

[7] Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in Mathematics 456. Springer, Berlin (1975). | DOI | MR | JFM

[8] Gillespie, J.: Model structures on modules over Ding-Chen rings. Homology Homotopy Appl. 12 (2010), 61-73. | DOI | MR | JFM

[9] Green, E. L.: On the representation theory of rings in matrix form. Pac. J. Math. 100 (1982), 123-138. | DOI | MR | JFM

[10] Haghany, A., Mazrooei, M., Vedadi, M. R.: Pure projectivity and pure injectivity over formal triangular matrix rings. J. Algebra Appl. 11 (2012), Article ID 1250107, 13 pages. | DOI | MR | JFM

[11] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. | DOI | MR | JFM

[12] Krylov, P., Tuganbaev, A.: Formal Matrices. Algebra and Applications 23. Springer, Cham (2017). | DOI | MR | JFM

[13] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). | DOI | MR | JFM

[14] Löfwall, C.: The global homological dimensions of trivial extensions of rings. J. Algebra 39 (1976), 287-307. | DOI | MR | JFM

[15] Mahdou, N., Ouarghi, K.: Gorenstein dimensions in trivial ring extensions. Commutative Algebra and its Applications Walter de Gruyter, Berlin (2009), 291-299. | DOI | MR | JFM

[16] Mao, L.: Ding modules and dimensions over formal triangular matrix rings. Rend. Semin. Mat. Univ. Padova 148 (2022), 1-22. | DOI | MR

[17] Mao, L.: Homological properties of trivial ring extensions. (to appear) in J. Algebra Appl. | DOI

[18] Mao, L., Ding, N.: Gorenstein FP-injective and Gorenstein flat modules. J. Algebra Appl. 7 (2008), 491-506. | DOI | MR | JFM

[19] Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Diagaku, Sect. A 6 (1958), 83-142. | MR | JFM

[20] Nagata, M.: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13. Interscience, New York (1962). | MR | JFM

[21] Palmér, I., Roos, J.-E.: Explicit formulae for the global homological dimensions of trivial extensions of rings. J. Algebra 27 (1973), 380-413. | DOI | MR | JFM

[22] Reiten, I.: Trivial Extensions and Gorenstein Rings: Thesis. University of Illinois, Urbana (1971). | MR

[23] Rotman, J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics 85. Academic Press, New York (1979). | MR | JFM

[24] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. | DOI | MR | JFM

[25] Yang, G.: Homological properties of modules over Ding-Chen rings. J. Korean Math. Soc. 49 (2012), 31-47. | DOI | MR | JFM

[26] Yang, G., Liu, Z., Liang, L.: Ding projective and Ding injective modules. Algebra Colloq. 20 (2013), 601-612. | DOI | MR | JFM

[27] Zhang, P.: Gorenstein-projective modules and symmetric recollements. J. Algebra 388 (2013), 65-80. | DOI | MR | JFM

Cité par Sources :