Ding projective and Ding injective modules over trivial ring extensions
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 903-919
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_{R}$, $_{R}M$, $(R,0)_{R\ltimes M}$ and $_{R\ltimes M}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel {M\otimes \alpha }\longrightarrow M\otimes _R X\stackrel {\alpha }\rightarrow X$ is exact and ${\rm coker}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.
DOI :
10.21136/CMJ.2023.0351-22
Classification :
16D40, 16D50, 16E05
Keywords: trivial extension; Ding projective module; Ding injective module
Keywords: trivial extension; Ding projective module; Ding injective module
@article{10_21136_CMJ_2023_0351_22,
author = {Mao, Lixin},
title = {Ding projective and {Ding} injective modules over trivial ring extensions},
journal = {Czechoslovak Mathematical Journal},
pages = {903--919},
publisher = {mathdoc},
volume = {73},
number = {3},
year = {2023},
doi = {10.21136/CMJ.2023.0351-22},
mrnumber = {4632864},
zbl = {07729544},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/}
}
TY - JOUR AU - Mao, Lixin TI - Ding projective and Ding injective modules over trivial ring extensions JO - Czechoslovak Mathematical Journal PY - 2023 SP - 903 EP - 919 VL - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/ DO - 10.21136/CMJ.2023.0351-22 LA - en ID - 10_21136_CMJ_2023_0351_22 ER -
%0 Journal Article %A Mao, Lixin %T Ding projective and Ding injective modules over trivial ring extensions %J Czechoslovak Mathematical Journal %D 2023 %P 903-919 %V 73 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0351-22/ %R 10.21136/CMJ.2023.0351-22 %G en %F 10_21136_CMJ_2023_0351_22
Mao, Lixin. Ding projective and Ding injective modules over trivial ring extensions. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 903-919. doi: 10.21136/CMJ.2023.0351-22
Cité par Sources :