Keywords: nonprincipal Dirichlet character; Hölder's inequality; $j$th symmetric power $L$-function; holomorphic cusp form
@article{10_21136_CMJ_2023_0348_22,
author = {Sharma, Anubhav and Sankaranarayanan, Ayyadurai},
title = {On the average behavior of the {Fourier} coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers},
journal = {Czechoslovak Mathematical Journal},
pages = {885--901},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0348-22},
mrnumber = {4632863},
zbl = {07729543},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/}
}
TY - JOUR AU - Sharma, Anubhav AU - Sankaranarayanan, Ayyadurai TI - On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers JO - Czechoslovak Mathematical Journal PY - 2023 SP - 885 EP - 901 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/ DO - 10.21136/CMJ.2023.0348-22 LA - en ID - 10_21136_CMJ_2023_0348_22 ER -
%0 Journal Article %A Sharma, Anubhav %A Sankaranarayanan, Ayyadurai %T On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers %J Czechoslovak Mathematical Journal %D 2023 %P 885-901 %V 73 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/ %R 10.21136/CMJ.2023.0348-22 %G en %F 10_21136_CMJ_2023_0348_22
Sharma, Anubhav; Sankaranarayanan, Ayyadurai. On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 885-901. doi: 10.21136/CMJ.2023.0348-22
[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. | DOI | MR | JFM
[2] Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. | DOI | MR | JFM
[3] Fomenko, O. M.: Identities involving coefficients of automorphic $L$-functions. J. Math. Sci., New York 133 (2006), 1749-1755. | DOI | MR | JFM
[4] Good, A.: The square mean of Dirichlet series associated with cusp forms. Mathematika 29 (1982), 278-295. | DOI | MR | JFM
[5] Granville, A., Soundararajan, K.: Multiplicative number theory: The pretentious approach. Available at https://dms.umontreal.ca/ {andrew/PDF/BookChaps1n2.pdf}.
[6] He, X.: Integral power sums of Fourier coefficients of symmetric square $L$-functions. Proc. Am. Math. Soc. 147 (2019), 2847-2856. | DOI | MR | JFM
[7] Heath-Brown, D. R.: The twelfth power moment of the Riemann-function. Q. J. Math., Oxf. II. Ser. 29 (1978), 443-462. | DOI | MR | JFM
[8] Ivić, A.: Exponent pairs and the zeta-function of Riemann. Stud. Sci. Math. Hung. 15 (1980), 157-181. | MR | JFM
[9] Jiang, Y., Lü, G.: On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms. Acta Arith. 3 (2014), 231-252. | DOI | MR | JFM
[10] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums. Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). | MR | JFM
[11] Krätzel, E.: Analytische Funktionen in der Zahlentheorie. Teubner-Texte zur Mathematik 139. B. G. Teubner, Stuttgart (2000). | DOI | MR | JFM
[12] Lao, H.: On the fourth moment of coefficients of symmetric square $L$-function. Chin. Ann. Math., Ser. B 33 (2012), 877-888. | DOI | MR | JFM
[13] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. | DOI | MR | JFM
[14] Loh, W. K. A.: Limitation to the asymptotic formula in Waring's problem. Acta Arith. 74 (1996), 1-15. | DOI | MR | JFM
[15] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. | DOI | MR | JFM
[16] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. II. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. | DOI | MR | JFM
[17] Sharma, A., Sankaranarayanan, A.: Average behavior of the Fourier coefficients of symmetric square $L$-function over some sequence of integers. Integers 22 (2022), Article ID A74, 17 pages. | MR | JFM
[18] Sharma, A., Sankaranarayanan, A.: Discrete mean square of the coefficients of symmetric square $L$-functions on certain sequence of positive numbers. Res. Number Theory 8 (2022), Article ID 19, 13 pages. | DOI | MR | JFM
[19] Sharma, A., Sankaranarayanan, A.: Higher moments of the Fourier coefficients of symmetric square $L$-functions on certain sequence. Rend. Circ. Mat. Palermo (2) (2023), 1399-1416. | DOI | MR | JFM
[20] Tang, H.: Estimates for the Fourier coefficients of symmetric square $L$-functions. Arch. Math. 100 (2013), 123-130. | DOI | MR | JFM
[21] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). | DOI | MR | JFM
[22] Zhai, S.: Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133 (2013), 3862-3876. | DOI | MR | JFM
Cité par Sources :