On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 885-901
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \geq 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,{\rm sym}^{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb {Z})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum $$ S_j^*:= \sum_{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{6}} \lambda ^{2}_{{\rm sym}^{j}f}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}), $$ where $x$ is sufficiently large, and $$ L(s,\mathrm{sym}^{j}f):=\sum _{n=1}^{\infty }\frac {\lambda_{\mathrm{sym}^{j}f}(n)}{n^{s}}. $$ When $j=2$, the error term which we obtain improves the earlier known result.
DOI :
10.21136/CMJ.2023.0348-22
Classification :
11F11, 11F30, 11M06
Keywords: nonprincipal Dirichlet character; Hölder's inequality; $j$th symmetric power $L$-function; holomorphic cusp form
Keywords: nonprincipal Dirichlet character; Hölder's inequality; $j$th symmetric power $L$-function; holomorphic cusp form
@article{10_21136_CMJ_2023_0348_22,
author = {Sharma, Anubhav and Sankaranarayanan, Ayyadurai},
title = {On the average behavior of the {Fourier} coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers},
journal = {Czechoslovak Mathematical Journal},
pages = {885--901},
publisher = {mathdoc},
volume = {73},
number = {3},
year = {2023},
doi = {10.21136/CMJ.2023.0348-22},
mrnumber = {4632863},
zbl = {07729543},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/}
}
TY - JOUR AU - Sharma, Anubhav AU - Sankaranarayanan, Ayyadurai TI - On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers JO - Czechoslovak Mathematical Journal PY - 2023 SP - 885 EP - 901 VL - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/ DO - 10.21136/CMJ.2023.0348-22 LA - en ID - 10_21136_CMJ_2023_0348_22 ER -
%0 Journal Article %A Sharma, Anubhav %A Sankaranarayanan, Ayyadurai %T On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers %J Czechoslovak Mathematical Journal %D 2023 %P 885-901 %V 73 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/ %R 10.21136/CMJ.2023.0348-22 %G en %F 10_21136_CMJ_2023_0348_22
Sharma, Anubhav; Sankaranarayanan, Ayyadurai. On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 885-901. doi: 10.21136/CMJ.2023.0348-22
Cité par Sources :