On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 885-901
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \geq 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,{\rm sym}^{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb {Z})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum $$ S_j^*:= \sum_{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{6}} \lambda ^{2}_{{\rm sym}^{j}f}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}), $$ where $x$ is sufficiently large, and $$ L(s,\mathrm{sym}^{j}f):=\sum _{n=1}^{\infty }\frac {\lambda_{\mathrm{sym}^{j}f}(n)}{n^{s}}. $$ When $j=2$, the error term which we obtain improves the earlier known result.
We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \geq 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,{\rm sym}^{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb {Z})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum $$ S_j^*:= \sum_{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{6}} \lambda ^{2}_{{\rm sym}^{j}f}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}), $$ where $x$ is sufficiently large, and $$ L(s,\mathrm{sym}^{j}f):=\sum _{n=1}^{\infty }\frac {\lambda_{\mathrm{sym}^{j}f}(n)}{n^{s}}. $$ When $j=2$, the error term which we obtain improves the earlier known result.
DOI : 10.21136/CMJ.2023.0348-22
Classification : 11F11, 11F30, 11M06
Keywords: nonprincipal Dirichlet character; Hölder's inequality; $j$th symmetric power $L$-function; holomorphic cusp form
@article{10_21136_CMJ_2023_0348_22,
     author = {Sharma, Anubhav and Sankaranarayanan, Ayyadurai},
     title = {On the average behavior of the {Fourier} coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {885--901},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0348-22},
     mrnumber = {4632863},
     zbl = {07729543},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/}
}
TY  - JOUR
AU  - Sharma, Anubhav
AU  - Sankaranarayanan, Ayyadurai
TI  - On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 885
EP  - 901
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/
DO  - 10.21136/CMJ.2023.0348-22
LA  - en
ID  - 10_21136_CMJ_2023_0348_22
ER  - 
%0 Journal Article
%A Sharma, Anubhav
%A Sankaranarayanan, Ayyadurai
%T On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers
%J Czechoslovak Mathematical Journal
%D 2023
%P 885-901
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/
%R 10.21136/CMJ.2023.0348-22
%G en
%F 10_21136_CMJ_2023_0348_22
Sharma, Anubhav; Sankaranarayanan, Ayyadurai. On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 885-901. doi: 10.21136/CMJ.2023.0348-22

[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. | DOI | MR | JFM

[2] Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. | DOI | MR | JFM

[3] Fomenko, O. M.: Identities involving coefficients of automorphic $L$-functions. J. Math. Sci., New York 133 (2006), 1749-1755. | DOI | MR | JFM

[4] Good, A.: The square mean of Dirichlet series associated with cusp forms. Mathematika 29 (1982), 278-295. | DOI | MR | JFM

[5] Granville, A., Soundararajan, K.: Multiplicative number theory: The pretentious approach. Available at https://dms.umontreal.ca/ {andrew/PDF/BookChaps1n2.pdf}.

[6] He, X.: Integral power sums of Fourier coefficients of symmetric square $L$-functions. Proc. Am. Math. Soc. 147 (2019), 2847-2856. | DOI | MR | JFM

[7] Heath-Brown, D. R.: The twelfth power moment of the Riemann-function. Q. J. Math., Oxf. II. Ser. 29 (1978), 443-462. | DOI | MR | JFM

[8] Ivić, A.: Exponent pairs and the zeta-function of Riemann. Stud. Sci. Math. Hung. 15 (1980), 157-181. | MR | JFM

[9] Jiang, Y., Lü, G.: On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms. Acta Arith. 3 (2014), 231-252. | DOI | MR | JFM

[10] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums. Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). | MR | JFM

[11] Krätzel, E.: Analytische Funktionen in der Zahlentheorie. Teubner-Texte zur Mathematik 139. B. G. Teubner, Stuttgart (2000). | DOI | MR | JFM

[12] Lao, H.: On the fourth moment of coefficients of symmetric square $L$-function. Chin. Ann. Math., Ser. B 33 (2012), 877-888. | DOI | MR | JFM

[13] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. | DOI | MR | JFM

[14] Loh, W. K. A.: Limitation to the asymptotic formula in Waring's problem. Acta Arith. 74 (1996), 1-15. | DOI | MR | JFM

[15] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. | DOI | MR | JFM

[16] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. II. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. | DOI | MR | JFM

[17] Sharma, A., Sankaranarayanan, A.: Average behavior of the Fourier coefficients of symmetric square $L$-function over some sequence of integers. Integers 22 (2022), Article ID A74, 17 pages. | MR | JFM

[18] Sharma, A., Sankaranarayanan, A.: Discrete mean square of the coefficients of symmetric square $L$-functions on certain sequence of positive numbers. Res. Number Theory 8 (2022), Article ID 19, 13 pages. | DOI | MR | JFM

[19] Sharma, A., Sankaranarayanan, A.: Higher moments of the Fourier coefficients of symmetric square $L$-functions on certain sequence. Rend. Circ. Mat. Palermo (2) (2023), 1399-1416. | DOI | MR | JFM

[20] Tang, H.: Estimates for the Fourier coefficients of symmetric square $L$-functions. Arch. Math. 100 (2013), 123-130. | DOI | MR | JFM

[21] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). | DOI | MR | JFM

[22] Zhai, S.: Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133 (2013), 3862-3876. | DOI | MR | JFM

Cité par Sources :