On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 885-901.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \geq 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,{\rm sym}^{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb {Z})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum $$ S_j^*:= \sum_{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{6}} \lambda ^{2}_{{\rm sym}^{j}f}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}), $$ where $x$ is sufficiently large, and $$ L(s,\mathrm{sym}^{j}f):=\sum _{n=1}^{\infty }\frac {\lambda_{\mathrm{sym}^{j}f}(n)}{n^{s}}. $$ When $j=2$, the error term which we obtain improves the earlier known result.
DOI : 10.21136/CMJ.2023.0348-22
Classification : 11F11, 11F30, 11M06
Keywords: nonprincipal Dirichlet character; Hölder's inequality; $j$th symmetric power $L$-function; holomorphic cusp form
@article{10_21136_CMJ_2023_0348_22,
     author = {Sharma, Anubhav and Sankaranarayanan, Ayyadurai},
     title = {On the average behavior of the {Fourier} coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {885--901},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2023},
     doi = {10.21136/CMJ.2023.0348-22},
     mrnumber = {4632863},
     zbl = {07729543},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/}
}
TY  - JOUR
AU  - Sharma, Anubhav
AU  - Sankaranarayanan, Ayyadurai
TI  - On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 885
EP  - 901
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/
DO  - 10.21136/CMJ.2023.0348-22
LA  - en
ID  - 10_21136_CMJ_2023_0348_22
ER  - 
%0 Journal Article
%A Sharma, Anubhav
%A Sankaranarayanan, Ayyadurai
%T On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers
%J Czechoslovak Mathematical Journal
%D 2023
%P 885-901
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/
%R 10.21136/CMJ.2023.0348-22
%G en
%F 10_21136_CMJ_2023_0348_22
Sharma, Anubhav; Sankaranarayanan, Ayyadurai. On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 885-901. doi : 10.21136/CMJ.2023.0348-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0348-22/

Cité par Sources :