Keywords: mean approximation; polyanalytic Besov space; polyanalytic Bergman space; dilatation; non-radial weight; angular weight
@article{10_21136_CMJ_2023_0347_23,
author = {Abkar, Ali},
title = {Polyanalytic {Besov} spaces and approximation by dilatations},
journal = {Czechoslovak Mathematical Journal},
pages = {305--317},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2023.0347-23},
mrnumber = {4717836},
zbl = {07893381},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0347-23/}
}
TY - JOUR AU - Abkar, Ali TI - Polyanalytic Besov spaces and approximation by dilatations JO - Czechoslovak Mathematical Journal PY - 2024 SP - 305 EP - 317 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0347-23/ DO - 10.21136/CMJ.2023.0347-23 LA - en ID - 10_21136_CMJ_2023_0347_23 ER -
Abkar, Ali. Polyanalytic Besov spaces and approximation by dilatations. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 305-317. doi: 10.21136/CMJ.2023.0347-23
[1] Abkar, A.: Norm approximation by polynomials in some weighted Bergman spaces. J. Funct. Anal. 191 (2002), 224-240. | DOI | MR | JFM
[2] Abkar, A.: Approximation in weighted analytic Besov spaces and in generalized Fock spaces. Complex Anal. Oper. Theory 16 (2022), Article ID 11, 19 pages. | DOI | MR | JFM
[3] Abkar, A.: Mean approximation in Bergman spaces of polyanalytic functions. Anal. Math. Phys. 12 (2022), Article ID 52, 16 pages. | DOI | MR | JFM
[4] Abreu, L. D., Feichtinger, H. G.: Function spaces of polyanalytic functions. Harmonic and Complex Analysis and its Applications Trends in Mathematics. Springer, Cham (2014), 1-38. | DOI | MR | JFM
[5] Balk, M. B.: Polyanalytic Functions. Mathematical Research 63. Akademie, Berlin (1991). | MR | JFM
[6] Duren, P., Gallardo-Gutiérrez, E. A., Montes-Rodríguez, A.: A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces. J. Lond. Math. Soc. 39 (2007), 459-466. | DOI | MR | JFM
[7] Haimi, A., Hedenmalm, H.: Asymptotic expansion of polyanalytic Bergman kernels. J. Funct. Anal. 267 (2014), 4667-4731. | DOI | MR | JFM
[8] Košelev, A. D.: On the kernel function of the Hilbert space of functions polyanalytic in a disk. Dokl. Akad. Nauk SSSR 232 (1977), 277-279 Russian. | MR | JFM
[9] Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity. Nauka, Moscow (1966), Russian. | MR | JFM
[10] Ramazanov, A. K.: On the structure of spaces of polyanalytic functions. Math. Notes 72 (2002), 692-704. | DOI | MR | JFM
[11] Vasilevski, N. L.: On the structure of Bergman and poly-Bergman spaces. Integral Equations Oper. Theory 33 (1999), 471-488. | DOI | MR | JFM
Cité par Sources :