Polyanalytic Besov spaces and approximation by dilatations
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 305-317.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Using partial derivatives $\partial f / \partial z$ and $\partial f / \partial \bar {z}$, we introduce Besov spaces of polyanalytic functions in the open unit disk, as well as in the upper half-plane. We then prove that the dilatations of functions in certain weighted polyanalytic Besov spaces converge to the same functions in norm. When restricted to the open unit disk, we prove that each polyanalytic function of degree $q$ can be approximated in norm by polyanalytic polynomials of degree at most $q$.
DOI : 10.21136/CMJ.2023.0347-23
Classification : 30E10, 30H20, 30H25, 46E15
Keywords: mean approximation; polyanalytic Besov space; polyanalytic Bergman space; dilatation; non-radial weight; angular weight
@article{10_21136_CMJ_2023_0347_23,
     author = {Abkar, Ali},
     title = {Polyanalytic {Besov} spaces and approximation by dilatations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {305--317},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2024},
     doi = {10.21136/CMJ.2023.0347-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0347-23/}
}
TY  - JOUR
AU  - Abkar, Ali
TI  - Polyanalytic Besov spaces and approximation by dilatations
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 305
EP  - 317
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0347-23/
DO  - 10.21136/CMJ.2023.0347-23
LA  - en
ID  - 10_21136_CMJ_2023_0347_23
ER  - 
%0 Journal Article
%A Abkar, Ali
%T Polyanalytic Besov spaces and approximation by dilatations
%J Czechoslovak Mathematical Journal
%D 2024
%P 305-317
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0347-23/
%R 10.21136/CMJ.2023.0347-23
%G en
%F 10_21136_CMJ_2023_0347_23
Abkar, Ali. Polyanalytic Besov spaces and approximation by dilatations. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 305-317. doi : 10.21136/CMJ.2023.0347-23. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0347-23/

Cité par Sources :