Keywords: explicit formula; Davenport expansion; Kummer's Fourier series; Riemann zeta-function; functional equation
@article{10_21136_CMJ_2023_0322_22,
author = {Yang, Quan and Mehta, Jay and Kanemitsu, Shigeru},
title = {On {Popov's} explicit formula and the {Davenport} expansion},
journal = {Czechoslovak Mathematical Journal},
pages = {869--883},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0322-22},
mrnumber = {4632862},
zbl = {07729542},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0322-22/}
}
TY - JOUR AU - Yang, Quan AU - Mehta, Jay AU - Kanemitsu, Shigeru TI - On Popov's explicit formula and the Davenport expansion JO - Czechoslovak Mathematical Journal PY - 2023 SP - 869 EP - 883 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0322-22/ DO - 10.21136/CMJ.2023.0322-22 LA - en ID - 10_21136_CMJ_2023_0322_22 ER -
%0 Journal Article %A Yang, Quan %A Mehta, Jay %A Kanemitsu, Shigeru %T On Popov's explicit formula and the Davenport expansion %J Czechoslovak Mathematical Journal %D 2023 %P 869-883 %V 73 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0322-22/ %R 10.21136/CMJ.2023.0322-22 %G en %F 10_21136_CMJ_2023_0322_22
Yang, Quan; Mehta, Jay; Kanemitsu, Shigeru. On Popov's explicit formula and the Davenport expansion. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 869-883. doi: 10.21136/CMJ.2023.0322-22
[1] Barner, K.: On A. Weil's explicit formula. J. Reine Angew. Math. 323 (1981), 139-152. | DOI | MR | JFM
[2] Chakraborty, K., Kanemitsu, S., Tsukada, H.: Arithmetical Fourier series and the modular relation. Kyushu J. Math. 66 (2012), 411-427. | DOI | MR | JFM
[3] Chowla, S.: On some infinite series involving arithmetical functions. Proc. Indian Acad. Sci. Sect. A 5 (1937), 511-513. | MR | JFM
[4] Davenport, H.: On some infinite series involving arithmetical functions. Q. J. Math., Oxf. Ser. 8 (1937), 8-13. | DOI | JFM
[5] Davenport, H.: On some infinite series involving arithmetical functions. II. Q. J. Math., Oxf. Ser. 8 (1937), 313-320. | DOI | JFM
[6] Davenport, H.: Multiplicative Number Theory. Graduate Texts in Mathematics 74. Springer, New York (1980). | DOI | MR | JFM
[7] Fawaz, A. Z.: The explicit formula for $L_0(x)$. Proc. Lond. Math. Soc., III. Ser. 1 (1951), 86-103. | DOI | MR | JFM
[8] Hamburger, H.: Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschen $\zeta$-Funktion äquivalent sind. Math. Ann. 85 (1922), 129-140 German \99999JFM99999 48.1214.01. | DOI | MR
[9] Hardy, G. H., Littlewood, J. E.: Some problems of Diophantine approximation: The lattice-points of a right-angled triangle I., II. Proc. Lond. Math. Soc. (2) 20 (1921), 15-36 \99999JFM99999 48.0197.07. | DOI | MR
[10] Hartman, P., Wintner, A.: On certain Fourier series involving sums of divisors. Trav. Inst. Math. Tbilissi 3 (1938), 113-118. | JFM
[11] Hecke, E.: Über analytische Funktionen und die Verteilung von Zahlen mod. Eins. Abh. Math. Semin. Univ. Hamb. 1 (1921), 54-76 German \99999JFM99999 48.0197.03 \99999DOI99999 10.1007/BF02940580 . | DOI | MR
[12] Ingham, A. E.: The Distribution of Prime Numbers. Cambridge Tracts in Mathematics and Mathematical Physics 30. Cambridge University Press, Cambridge (1932). | MR | JFM
[13] Jaffard, S.: On Davenport expansions. Fractal Geometry and Applications Proceedings of Symposia in Pure Mathematics 72. AMS, Providence (2004), 273-303. | MR | JFM
[14] Kanemitsu, S., Ma, J., Tanigawa, Y.: Arithmetical identities and zeta-functions. Math. Nachr. 284 (2011), 287-297. | DOI | MR | JFM
[15] Kanemitsu, S., Tsukada, H.: Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy. Series on Number Theory and Its Applications 10. World Scientific, Hackensack (2015),\99999DOI99999 10.1142/8711 . | MR | JFM
[16] Koksma, J. F.: Diophantische Approximationen. Springer, Berlin (1974), German \99999MR99999 0344200 . | MR | JFM
[17] Li, H., Ma, J., Zhang, W.: On some Diophantine Fourier series. Acta Math. Sin., Engl. Ser. 26 (2010), 1125-1132. | DOI | MR | JFM
[18] Mikolás, M.: Mellinsche Transformation und Orthogonalität bei $\zeta(s,u)$. Verallgemeinerung der Riemannschen Funktionalgleichung von $\zeta(s)$. Acta Sci. Math. 17 (1956), 143-164 German \99999MR99999 0089864 . | MR | JFM
[19] Patkowski, A. E.: On Popov's formula involving the von Mangoldt function. Pi Mu Epsilon J. 15 (2019), 45-47. | MR | JFM
[20] Patkowski, A. E.: A note on arithmetic Diophantine series. Czech. Math. J. 71 (2021), 1149-1155. | DOI | MR | JFM
[21] Patkowski, A. E.: On Davenport expansions, Popov's formula, and Fine's query. Available at , 8 pages. | arXiv | MR
[22] Patkowski, A. E.: On arithmetic series involving the fractional part function. Tsukuba J. Math. 46 (2022), 145-152. | DOI | MR | JFM
[23] Popov, A. I.: Several series containing primes and roots of $\zeta(s)$. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 41 (1943), 362-363. | MR | JFM
[24] Prachar, K.: Primzahlverteilung. Die Grundlehren der Mathematischen Wissenschaften 91. Springer, Berlin (1957), German. | MR | JFM
[25] Romanov, N. P.: Hilbert spaces and the theory of numbers. II. Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 131-152 Russian. | MR | JFM
[26] Segal, S. L.: On an identity between infinite series of arithmetic functions. Acta Arith. 28 (1976), 345-348. | DOI | MR | JFM
[27] Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001). | DOI | MR | JFM
[28] Titchmarsh, E. C.: Some properties of the Riemann zeta-function. Q. J. Math., Oxf. Ser. 14 (1943), 16-26. | DOI | MR | JFM
[29] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function. Oxford University Press, Oxford (1951). | MR | JFM
[30] Walfisz, A. A.: On the sums of the coefficients of certain Dirichlet series. Soobshch. Akad. Nauk Gruz. SSR 26 (1961), 9-16 Russian. | MR | JFM
[31] Walum, H.: Multiplication formulae for periodic functions. Pac. J. Math. 149 (1991), 383-396. | DOI | MR | JFM
Cité par Sources :