On Popov's explicit formula and the Davenport expansion
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 869-883
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function $a_n$ with the periodic Bernoulli polynomial weight $\bar {B}_\varkappa (nx)$ and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order $0$ or $1$ gives the well-known explicit formula for respectively the partial sum or the Riesz sum of order $1$ of PNT functions. Then we may reveal the genesis of the Popov explicit formula as the integrated Davenport series with the Riesz sum of order $1$ subtracted. The Fourier expansion of the Davenport series is proved to be a consequence of the functional equation, which is referred to as the Davenport expansion. By the explicit formula for the Davenport series, we also prove that the Davenport expansion for the von Mangoldt function is equivalent to the Kummer's Fourier series up to a formula of Ramanujan and a fortiori is equivalent to the functional equation for the Riemann zeta-function.
We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function $a_n$ with the periodic Bernoulli polynomial weight $\bar {B}_\varkappa (nx)$ and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order $0$ or $1$ gives the well-known explicit formula for respectively the partial sum or the Riesz sum of order $1$ of PNT functions. Then we may reveal the genesis of the Popov explicit formula as the integrated Davenport series with the Riesz sum of order $1$ subtracted. The Fourier expansion of the Davenport series is proved to be a consequence of the functional equation, which is referred to as the Davenport expansion. By the explicit formula for the Davenport series, we also prove that the Davenport expansion for the von Mangoldt function is equivalent to the Kummer's Fourier series up to a formula of Ramanujan and a fortiori is equivalent to the functional equation for the Riemann zeta-function.
DOI : 10.21136/CMJ.2023.0322-22
Classification : 11J54, 11M41, 11N05
Keywords: explicit formula; Davenport expansion; Kummer's Fourier series; Riemann zeta-function; functional equation
@article{10_21136_CMJ_2023_0322_22,
     author = {Yang, Quan and Mehta, Jay and Kanemitsu, Shigeru},
     title = {On {Popov's} explicit formula and the {Davenport} expansion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {869--883},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0322-22},
     mrnumber = {4632862},
     zbl = {07729542},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0322-22/}
}
TY  - JOUR
AU  - Yang, Quan
AU  - Mehta, Jay
AU  - Kanemitsu, Shigeru
TI  - On Popov's explicit formula and the Davenport expansion
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 869
EP  - 883
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0322-22/
DO  - 10.21136/CMJ.2023.0322-22
LA  - en
ID  - 10_21136_CMJ_2023_0322_22
ER  - 
%0 Journal Article
%A Yang, Quan
%A Mehta, Jay
%A Kanemitsu, Shigeru
%T On Popov's explicit formula and the Davenport expansion
%J Czechoslovak Mathematical Journal
%D 2023
%P 869-883
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0322-22/
%R 10.21136/CMJ.2023.0322-22
%G en
%F 10_21136_CMJ_2023_0322_22
Yang, Quan; Mehta, Jay; Kanemitsu, Shigeru. On Popov's explicit formula and the Davenport expansion. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 869-883. doi: 10.21136/CMJ.2023.0322-22

[1] Barner, K.: On A. Weil's explicit formula. J. Reine Angew. Math. 323 (1981), 139-152. | DOI | MR | JFM

[2] Chakraborty, K., Kanemitsu, S., Tsukada, H.: Arithmetical Fourier series and the modular relation. Kyushu J. Math. 66 (2012), 411-427. | DOI | MR | JFM

[3] Chowla, S.: On some infinite series involving arithmetical functions. Proc. Indian Acad. Sci. Sect. A 5 (1937), 511-513. | MR | JFM

[4] Davenport, H.: On some infinite series involving arithmetical functions. Q. J. Math., Oxf. Ser. 8 (1937), 8-13. | DOI | JFM

[5] Davenport, H.: On some infinite series involving arithmetical functions. II. Q. J. Math., Oxf. Ser. 8 (1937), 313-320. | DOI | JFM

[6] Davenport, H.: Multiplicative Number Theory. Graduate Texts in Mathematics 74. Springer, New York (1980). | DOI | MR | JFM

[7] Fawaz, A. Z.: The explicit formula for $L_0(x)$. Proc. Lond. Math. Soc., III. Ser. 1 (1951), 86-103. | DOI | MR | JFM

[8] Hamburger, H.: Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschen $\zeta$-Funktion äquivalent sind. Math. Ann. 85 (1922), 129-140 German \99999JFM99999 48.1214.01. | DOI | MR

[9] Hardy, G. H., Littlewood, J. E.: Some problems of Diophantine approximation: The lattice-points of a right-angled triangle I., II. Proc. Lond. Math. Soc. (2) 20 (1921), 15-36 \99999JFM99999 48.0197.07. | DOI | MR

[10] Hartman, P., Wintner, A.: On certain Fourier series involving sums of divisors. Trav. Inst. Math. Tbilissi 3 (1938), 113-118. | JFM

[11] Hecke, E.: Über analytische Funktionen und die Verteilung von Zahlen mod. Eins. Abh. Math. Semin. Univ. Hamb. 1 (1921), 54-76 German \99999JFM99999 48.0197.03 \99999DOI99999 10.1007/BF02940580 . | DOI | MR

[12] Ingham, A. E.: The Distribution of Prime Numbers. Cambridge Tracts in Mathematics and Mathematical Physics 30. Cambridge University Press, Cambridge (1932). | MR | JFM

[13] Jaffard, S.: On Davenport expansions. Fractal Geometry and Applications Proceedings of Symposia in Pure Mathematics 72. AMS, Providence (2004), 273-303. | MR | JFM

[14] Kanemitsu, S., Ma, J., Tanigawa, Y.: Arithmetical identities and zeta-functions. Math. Nachr. 284 (2011), 287-297. | DOI | MR | JFM

[15] Kanemitsu, S., Tsukada, H.: Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy. Series on Number Theory and Its Applications 10. World Scientific, Hackensack (2015),\99999DOI99999 10.1142/8711 . | MR | JFM

[16] Koksma, J. F.: Diophantische Approximationen. Springer, Berlin (1974), German \99999MR99999 0344200 . | MR | JFM

[17] Li, H., Ma, J., Zhang, W.: On some Diophantine Fourier series. Acta Math. Sin., Engl. Ser. 26 (2010), 1125-1132. | DOI | MR | JFM

[18] Mikolás, M.: Mellinsche Transformation und Orthogonalität bei $\zeta(s,u)$. Verallgemeinerung der Riemannschen Funktionalgleichung von $\zeta(s)$. Acta Sci. Math. 17 (1956), 143-164 German \99999MR99999 0089864 . | MR | JFM

[19] Patkowski, A. E.: On Popov's formula involving the von Mangoldt function. Pi Mu Epsilon J. 15 (2019), 45-47. | MR | JFM

[20] Patkowski, A. E.: A note on arithmetic Diophantine series. Czech. Math. J. 71 (2021), 1149-1155. | DOI | MR | JFM

[21] Patkowski, A. E.: On Davenport expansions, Popov's formula, and Fine's query. Available at , 8 pages. | arXiv | MR

[22] Patkowski, A. E.: On arithmetic series involving the fractional part function. Tsukuba J. Math. 46 (2022), 145-152. | DOI | MR | JFM

[23] Popov, A. I.: Several series containing primes and roots of $\zeta(s)$. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 41 (1943), 362-363. | MR | JFM

[24] Prachar, K.: Primzahlverteilung. Die Grundlehren der Mathematischen Wissenschaften 91. Springer, Berlin (1957), German. | MR | JFM

[25] Romanov, N. P.: Hilbert spaces and the theory of numbers. II. Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 131-152 Russian. | MR | JFM

[26] Segal, S. L.: On an identity between infinite series of arithmetic functions. Acta Arith. 28 (1976), 345-348. | DOI | MR | JFM

[27] Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001). | DOI | MR | JFM

[28] Titchmarsh, E. C.: Some properties of the Riemann zeta-function. Q. J. Math., Oxf. Ser. 14 (1943), 16-26. | DOI | MR | JFM

[29] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function. Oxford University Press, Oxford (1951). | MR | JFM

[30] Walfisz, A. A.: On the sums of the coefficients of certain Dirichlet series. Soobshch. Akad. Nauk Gruz. SSR 26 (1961), 9-16 Russian. | MR | JFM

[31] Walum, H.: Multiplication formulae for periodic functions. Pac. J. Math. 149 (1991), 383-396. | DOI | MR | JFM

Cité par Sources :